
CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD
CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD
CLD

CLD
CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD
CLD

CL
D

CLD
CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD
CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CL
D

CL
D

CL
D

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD
CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD
CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD
CLD

CLD

CLD
CL
D

CLD

CLD
CLD

CLD

CLD

CLD

CLD
CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD
CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CLD
CL
D

CL
D

CLD

CLD

CLD

CLD
CLD

CLD
CLD

CL
D

CLD

CLD

CL
D

CLD
CL
D

CL
D

CLD

CL
D

CLD
CLD

CLD
CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD
CL
D

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD
CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD
CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CLD
CLD

CLD

CLD

CLD
CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CL
D

CLD

CLD

CLD

CL
D

CLD
CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD
CLD

CLD
CL
D

CL
D

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD
CLD

CL
D

CLD

CLD

CLD
CLD

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD
CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD
CLD

CLD

CLD

CLD

CLD
CLD

CLD
CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD
CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD
CLD

CLD
CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD
CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

Context Lua Documents 1

Introduction
Sometimes you hear folks complain about the TEX input language, i.e. the backslashed com-
mands that determine your output. Of course, when alternatives are being discussed every
one has a favourite programming language and of course in practice coding a document in
each of them triggers similar sentiments with regards to coding as TEX itself does.

However, just for fun, I added a couple of commands to ConTEXt MkIV that permit you to
code your document in Lua. After all it is surprisingly simple to implement a feature like this
due to metatables. I was wondering if there was a more natural way to deal with commands
at the Lua end. Of course it's a bit slower but often more readable when mixed with Lua
code.

So, we now can code in TEX, xml, METAPOST, as well as in Lua. Coding in Lua makes a lot
of sense when you generate content, for instance from a database.

From the users perspective a ConTEXt run goes like:

context yourfile

and by default a file with suffix texwill be processed. There are however a few other options:

context yourfile.xml
context yourfile.rlx --forcexml
context yourfile.lua
context yourfile.pqr --forcelua
context yourfile.cld
context yourfile.xyz --forcecld

When processing a Lua file the given file is loaded and just processed. This options will
seldom be used as it is way more efficient to let mtxrun process that file. However, the last
two variants are what we will discuss here. The suffix cld is a shortcut for ConTEXt Lua
Document.

A simple cld file looks like this:

context.starttext()
context.chapter("Hello There!")
context.stoptext()

So, yes, you need to know the ConTEXt commands in order to use this mechanism. In spite of
what you might expect, the codebase involved in this gimmick is not that large. If you know
ConTEXt, and if you know how to call commands, you basically can use this Lua method.

There are a few rules that you need to be aware of. First of all no syntax checking is done.
Second you need to know what the given commands expects in terms of arguments. Third,
the type of your arguments matter:

nothing : just the command, no arguments
string : argument with curly braces

Context Lua Documents 2

array : list between square backets
hash : assignment list between square brackets

In the code above you have seen examples of this but here are some more:

context.chapter("Some title")
context.chapter({ "first" }, "Some title")
context.startchapter({ title = "Some title", label = "first" })

This is equivalent to:

\chapter{Some title}
\chapter[first]{Some title}
\startchapter[title={Some title},label=first]

Strings are interpreted as TEX input, so:

context.mathematics("\\sqrt{2^3}")

or, if you don't want to escape:

context.mathematics([[\sqrt{2^3}]])

is okay. As TEX math is a language in its own and a de-facto standard way of inputting math
this is quite natural, even at the Lua end.

Appetizer
Before we give some more examples, we will have a look at the way the title page is made:

local todimen = number.todimen

context.startTEXpage()

local paperwidth = tex.dimen.paperwidth
local paperheight = tex.dimen.paperheight
local nofsteps = 25
local firstcolor = "darkblue"
local secondcolor = "white"

context.definelayer(
{ "titlepage" }

)

context.setuplayer(
{ "titlepage" },
{

width = todimen(paperwidth),

Context Lua Documents 3

height = todimen(paperheight),
}

)

context.setlayerframed(
{ "titlepage" },
{ offset = "-5pt" },
{

width = todimen(paperwidth),
height = todimen(paperheight),
background = "color",
backgroundcolor = firstcolor,
backgroundoffset = "10pt",
frame = "off",

},
""

)

for i=1, nofsteps do
for j=1, nofsteps do

context.setlayerframed(
{ "titlepage" },
{

x = todimen((i-1) * paperwidth /nofsteps),
y = todimen((j-1) * paperheight/nofsteps),
rotation = math.random(360),

},
{

frame = "off",
background = "color",
backgroundcolor = secondcolor,
foregroundcolor = firstcolor,
foregroundstyle = "type",

},
"CLD"

)
end

end

context.tightlayer(
{ "titlepage" }

)

context.stopTEXpage()

return true

Context Lua Documents 4

This does not look that bad, does it? Of course in pure TEX code it looks mostly the same but
loops and calculations look a bit more natural in Lua then in TEX.

A few examples
As it makes most sense to use the Lua interface for generated text, here is another example
with a loop:

context.startitemize({ "packed" })
for i=1,10 do

context.startitem()
context("this is item %i",i)

context.stopitem()
end

context.stopitemize()

Just as you can mix TEX with xml and METAPOST, you can define bits and pieces of a docu-
ment in Lua. Tables are good candidates:

\startluacode
context.startlinecorrection({ "blank" })

context.bTABLE()
for i=1,10 do

context.bTR()
for i=1,20 do

context.bTD({ align= "middle", style = "type" })
local r= math.random(99)
if r < 50 then

context(context.blue("%#2i",r))
else

context("%#2i",r)
end

context.eTD()
end
context.eTR()

end
context.eTABLE()

context.stoplinecorrection()
\stopluacode

Here we see a function call to context in the most indented line. The first argument is a
format and the rest of the arguments is substituted into this format. The result is shown in
table 1. The line correction is ignored when we use this table as a float, otherwise it assures
proper vertical spacing around the table.

Not all code will look as simple as this. Consider the following:

Context Lua Documents 5

85 18 46 35 67 60 87 95 34 3 71 7 43 47 15 73 66 81 93 9
75 89 8 15 33 42 25 92 57 58 10 31 83 93 69 35 72 65 98 41
3 49 85 72 88 79 48 89 62 70 50 94 67 99 99 25 89 72 38 12
87 94 53 39 39 95 16 69 72 3 62 72 85 33 46 35 39 91 48 77
23 30 6 50 60 88 21 51 83 38 17 33 26 66 16 24 59 30 86 55
34 92 47 11 45 90 66 76 84 44 60 31 91 52 13 39 84 82 17 85
64 7 76 30 74 88 70 97 27 71 88 4 56 69 72 17 25 23 64 64
39 14 80 83 92 91 29 15 4 24 83 58 64 14 38 67 65 97 38 16
5 58 28 13 62 83 13 92 41 99 63 59 48 92 59 9 26 70 14 25
5 70 74 43 91 61 25 1 55 41 96 72 32 94 17 75 6 1 97 82

Table 1 A table generated by Lua.

context.placefigure(
"caption",
function() context.externalfigure({ "cow.pdf" }) end

)

Here we pass an argument wrapped in a function. If we would not do that, the external
figure would end up wrong, as arguments to functions are evaluated before the function
that gets them. A function argument is treated special and in this case the external figure
ends up right. Here is another example:

\startluacode
context.placefigure("Two cows!",function()

context.bTABLE()
context.bTR()

context.bTD()
context.externalfigure(

{ "cow.pdf" },
{ width = "3cm", height = "3cm" }

)
context.eTD()
context.bTD({ align = "{lohi,middle}" })

context("and")
context.eTD()
context.bTD()

context.externalfigure(
{ "cow.pdf" },
{ width = "4cm", height = "3cm" }

)
context.eTD()

context.eTR()

Context Lua Documents 6

context.eTABLE()
end)

\stopluacode

and

Figure 1 Two cows!

In previous examples the function has no return value and as such ends up as string, but
other types are also possible. The following two calls are equivalent:

context.chapter(
{ "ref" },
"Title"

)

context.chapter(
function() return { "ref" } end,
function() return "Title" end

)

and both are effectively:

\chapter[ref]{Title}

Because the ConTEXt user interface is quite consistent this kind of tricks is possible. Of course
more obscure interfaces can be supported as well by returning a function.

context.chapter(function return "*", "direct" end, "Title")

Of course, this also works out well then:

tex.sprint(ctx.catcodes,"\\chapter*{Title}")

But ConTEXt is not to happy with such chapters. The direct signals that no braces or brack-
ets should be added to the *.

A function call to context acts like a print, as in:

\startluacode
context("test ")
context.bold("me")
context(" first")

\stopluacode

Context Lua Documents 7

However, internally we use the the string.format function so you can pass more argu-
ments.

\startluacode
context.startimath()
context("%s = %0.5f",utf.char(0x03C0),math.pi)
context.stopimath()

\stopluacode

Special commands
There is one function in the context namespace that is no macro:

context.runfile("somefile.cld")

Another useful command is:

context.enabletrackers({ "cld.print" })

but this is just the equivalent of the macro with the same name:

\enabletrackers[cld.print]

Disclaimer
This mechanism is still experimental and might change a bit as I'm not entirely convinced
that this is the right way to do things.

Hans Hagen
Hasselt NL
July 2009

