1IX4INOO

MKII

MKIV

1IX4INOOD

Contents

Vi

Vil

VIl

Xl

Wl

Xl

\%

XV

XVI

XVII

XVIII

XIX

XX

Introduction

From MklI to MkIV
How Lua fits in
Initialization revised
An example: CalcMath
Going utf

A fresh look at fonts
Token speak

How about performance
Nodes and attributes
Dirty tricks

Going beta

Zapfing fonts

Arabic

Colors redone

Chinese, Japanese and Korean, aka CJK

Optimization

XML revisioned
Breaking apart
Collecting garbage

Nice to know

19
23
27
31
47

57

75
79
87
99

107
17

125
131

145

151

Contents 1

XXI

XXI

XXII

XXIV

XXV

XXVI

XXVII

XXVIII

XXIX

XXX

XXXI

XXXII

XXX

XXXIV

XXXV

XXXVI

The luafication of TX and ConTgXt
The MetaPost Library

The luaTX Mix

How to convince Don and Hermann to use LuaTgX
OpenType: too open?

It works!

Virtual Reality

Getting lost

Everything structure

Tracking

The order of things

Unicode math

User code

Just plain

Halfway

Where do we stand

2 Contents

179

197

215
223
229
233
237
241
249
269
277
297
301
305

313

Introduction

In this document | will keep track of the transition of ConTgXt from Mkll to MkIV, the latter
being the Lua aware version.

The development of LuaTgX started with a few email exchanges between me and Hartmut
Henkel. I had played a bit with Lua in SciTE and somehow felt that it would fit into TgX
quite well. Hartmut made me a version of pdfTgX which provided a \1ua command.
After exploring this road a bit Taco Hoekwater took over and we quickly reached a point
where the pdfTgX development team could agree on following this road to the future.

The development was boosted by a substantial grant from Colorado State University in
the context of the Oriental TEX Project of Idris Samawi Hamid. This project aims at bring-
ing features into TgX that will permit ConTgXt to do high quality Arabic typesetting. Due
to this grant Taco could spent substantial time on development, which in turn meant that
| could start playing with more advanced features.

This document is not so much a users manual as a history of the development. Consider
ita collection of articles, and some chapters indeed have ended up in the journals of user
groups. Things may evolve and the way things are done may change, but it felt right to
keep track of the process this way. Keep in mind that some features may have changed
while LuaTgX matured.

Just for the record: development in the LuaTgX project is done by Taco Hoekwater, Hart-
mut Henkel and Hans Hagen. Eventually, the stable versions will become pdfTgX version 2
and other members of the pdfTgX team will be involved in development and mainte-
nance. In order to prevent problems due to new and maybe even slightly incompatible
features, pdfTgX version 1 will be kept around as well, but no fundamentally new features
will be added to it. For practical reasons we use LuaTgX as the name of the development
version but also for pdfTgX 2. That way we can use both engines side by side.

This document is also one of our test cases. Here we use traditional TgX fonts (for math),
Type1 and OpenType fonts. We use color and include test code. Taco and | always test
new versions of LuaTgX (the program) and MkIV (the macros and Lua code) with this doc-
ument before a new version is released. Keep tuned,

Hans Hagen, Hasselt NL,
August 2006 and beyond

http://www.luatex.org

Introduction 3

4 Introduction

I From MKkll to MkIV

Sometime in 2005 the development of LuaTgX started, a further development of pdfTgX
and a precursor to pdfTgX version 2. This TgX variant will provide:

21-32 bitinternals plus a code cleanup

flexible support for OpenType fonts

an internal utf data flow

the bidirectional typesetting of Aleph

Lua callbacks to the most relevant TgX internals
some extensions to TgX (for instance math)

an efficient way to communicate with MetaPost

In the tradition of TEX this successor will be downward compatible in most essential parts
and in the end, there is still pdfTgX version 1 as fall back.

In the mean time we have seen another unicode variant show up, X3IgX which is under
active development, uses external libraries, provides access to the fonts on the operating
system, etc.

From the beginning, ConTgXt always worked with all engines. This was achieved by con-
ditional code blocks: depending on what engine was used, different code was put in
the format and/or used at runtime. Users normally were unaware of this. Examples of
engines are e-TgX, Aleph, and X3IgX. Because nowadays all engines provide the e-TgX fea-
tures, in August 2006 we decided to consider those features to be present and drop pro-
viding the standard TgX compatible variants. This is a small effort because all code that is
sensitive for optimization already has e-TgX code branches for many years.

However, with the arrival of LuaTgX, we need a more drastic approach. Quite some exist-
ing code can go away and will be replaced by different solutions. Where TgX code ends
up in the formatfile, along with its state, Lua code will be initiated at run time, after a Lua
instance is started. ConTgXt reserves its own instance of Lua.

Most of this will go unnoticed for the users because the user interface will not change. For
developers however, we need to provide a mechanism to deal with these issues. This is
why, for the first time in ConTgXt's history we will officially use a kind of version tag. When
we changed the low level interface from Dutch to English we jokingly talked of version 2.
So, it makes sense to follow this lead.

e ConTXt Mkl At that moment we still had a low level Dutch interface, invisible for
users but not for developers.

e ConTXt Mkl We now have a low level English interface, which (as we indeed saw
happen) triggers more development by users.

e ConTgXt MkIV This is the next generation of ConTgXt, with parts re-implemented.
It's an at some points drastic system overhaul.

From Mkll to MkIV 5

Keep in mind that the functionality does not change, although in some places, for in-
stance fonts, MkIV may provide additional functionality. The reason why most users will
not notice the difference (maybe apart from performance and convenience) is that at the
user interface level nothing changes (most of it deals with typesetting, not with low level
details).

The hole in the numbering permits us to provide a Mklll version as well. Once XJTgX is
stable, we may use that slot for X3IgX specific implementations.

As per August 2006 the banner is adapted to this distinction:

ver: 2006.09.06 22:46 MK II fmt: 2006.9.6
ver: 2006.09.06 22:47 MK IV fmt: 2006.9.6

This numbering system is reflected at the file level in such a way that we can keep devel-
oping the way we do, i.e. no files all over the place, in subdirectories, etc.

Most of the system's core files are not affected, but some may be, like those dealing with
fonts, input- and output encodings, file handling, etc. Those files may come with different
suffixes:

e somefile.tex: the mainfile, implementingthe interface and common code
e somefile.mkii: mostly existing code, suitable forgood old TEX (e-TgX, pdfTgX, Aleph).

e somefile.mkiv: code optimized foruse with LuaTgX, which could follow completely
different approaches

e somefile.lua: Lua code, loaded at format generation time and/or runtime

As said, some day somefile.mkiii code may show up. Which variantis loaded is de-
termined automatically at format generation time as well as at run time.

6 From MKkll to MkIV

I How Luafitsin

introduction

Here | will discuss a few of the experiments that drove the development of LuaTgX. It
describes the state of affairs around the time that we were preparing for tug 2006. This
development was pretty demanding for Taco and me but also much fun. We were in a
kind of permanent Skype chat session, with binaries flowing in one direction and TgX and
Lua code the other way. By gradually replacing (even critical) components of ConTiXt we
had a real test bed and torture tests helped us to explore and debug at the same time.
Because Taco uses linux as platform and | mostly use MS Windows, we could investigate
platform dependent issues conveniently. While reading this text, keep in mind that this
is just the beginning of the game.

| will not provide sample code here. When possible, the MkIV code transparantly re-
places Mkll code and users will seldom notices that something happens in different way.
Of course the potential is there and future extensions may be unique to MkIV.

compatibility

The first experiments, already conducted with the experimental versions involved run-
time conversion of one type of input into another. An example of this is the (TI) calcula-
tor math input handler that converts a rather natural math sequence into TgX and feeds
that back into TgX. This mechanism eventually will evolve into a configurable math input
handler. Such applications are unique to MklV code and will not be backported to MkII.
The question is where downward compatibility will become a problem. We don't ex-
pect many problems, apart from occasional bugs that result from splitting the code base,
mostly because new features will not affect older functionality. Because we have to re-
organize the code base a bit, we also use this opportunity to start making a variant of
ConTgXt which consists of building blocks: MetaTgX. This is less interesting for the aver-
age user, but may be of interest for those using ConTgXt in workflows where only part of
the functionality is needed.

metapost

Of course, when | experiment with such new things, | cannot let MetaPost leave un-
touched. And so, in the early stage of LuaTgX development | decided to play with two
MetaPost related features: conversion and runtime processing.

Conversion from MetaPost output to pdf is currently done in pure TeX code. Apart from
convenience, this has the advantage that we can let TgX take care of font inclusions. The

How Luafitsin 7

tricky part of this conversion is that MetaPost output has some weird aspects, like dvips
specific linewidth snapping. Another nasty element in the conversion is that we need to
transform paths when pens are used. Anyhow, the converter has reached a rather stable
state by now.

One of the ideas with MetaPost version 17 is that we will have an alternative output mode.
In the perspective of LuaTgX it makes sense to have a Lua output mode. Whatever con-
verter we use, it needs to deal with MetaFun specials. These are responsible for special
features like transparency, graphic inclusion, shading, and more. Currently we misuse
colors to signal such features, but the new pre/post path hooks permit more advanced
implementations. Experimenting with such new features is easier in Lua than in TgX.

The MkIV converter is a multi-pass converter. First we clean up the MetaPost output, next
we convert the PostScript code into Lua calls. We assume that this Lua code eventually
can be output directly from MetaPost. We then evaluate this converted Lua blob, which
results in TEX commands. Think of:

1.2 setlinejoin

turned into:

mp.setlinejoin(1.2)

becoming:

\PDFcode{1.2 j}

which is, when the pdfTgX driver is active, equivalent to:
\pdfliteral{1.2 j}

Of course, when paths are involved, more things happen behind the scenes, but in the
end an mp . path enters the Lua machinery.

When the MkIV converter reached a stable state, tests demonstrated then the code was
upto 20% slower that the pure TgX alternative on average graphics, and but faster when
many complex path transformations (due to penshapes) need to be done. This slow-
down was due to the cleanup (using expressions) and intermediate conversion. Because
Taco develops LuaTgX as well as maintains and extends MetaPost, we conducted experi-
ments that combine features of these programs. As a result of this, shortcuts found their
way into the MetaPost output.

Cleaning up the MetaPost output using Lua expressions takes relatively much time. How-
ever, starting with version 0.970 MetaPost uses a preamble, which permits not only short
commands, but also gets rid of the weird linewidth and filldraw related PostScript con-
structs. The moderately complex graphic that we use for testing (figure 1) takes over 16

8 How Luafitsin

O eps

PR RN
P ~
Vs N
’ \
/7 L . \
/ . . \
/ N . \
I . . \
to [:
\ - . /
\ . E ,
\\ .) /
\ ,/
A s
N -

Figure Il.1 converter test figure

seconds when converted 250 times. When we enable shortcuts we can avoid part of the
cleanup and runtime goes down to under 7.5 seconds. This is significantly faster than the
MkIl code. We did experiments with simulated Lua output from MetaPost and then the
MKIV converter really flies. The values on Taco's system are given between parenthesis.

prologues/mpprocset 1/0 1/1 2/02/1
Mkl 8.5(5.7) 8.0(5.5) 8.88.5
MkIV 16.1(10.6) 7.2(4.5) 16.37.4

The main reason for the huge difference in the MkIV times is that we do a rigourous
cleanup of the older MetaPost output in order avoid messy the messy (but fast) code
that we use in the Mkll converter. Think of:

0 0.5 dtransform truncate idtransform setlinewidth pop
closepath gsave fill grestore stroke

In the Mkll converter, we push every number or keyword on a stack and use keywords as
trigger points. In the MkIV code we convert the stack based PostScript calls to Lua func-
tion calls. Lines as shown are converted to single calls first. When prologues is setto 2,
such line no longer show up and are replaced by simple calls accompanied by defini-
tions in the preamble. Not only that, instead of verbose keywords, one or two character
shortcuts are used. This means that the Mkll code can be faster when procsets are used
because shorter strings end up in the stack and comparison happens faster. On the other
hand, when no procsets are used, the runtime is longer because of the larger preamble.

Because the converter is used outside ConTgXt as well, we support all combinations in
order not to get error messages, but the converter is supposed to work with the following
settings:

How Luafitsin 9

prologues
mpprocset

1
1

We don't need to set prologues to 2 (font encodings in file) or 3 (also font resources in
file). So, in the end, the comparison in speed comes down to 8.0 seconds for Mkll code
and 7.2 seconds for the MkIV code when using the latest greatest MetaPost. When we
simulate Lua output from MetaPost, we end up with 4.2 seconds runtime and when Meta-
Post could produce the converter's TeX commands, we need only 0.3 seconds for em-
bedding the 250 instances. This includes TgX taking care of handling the specials, some
of which demand building moderately complex pdf data structures.

But, conversion is not the only factor in convenient MetaPost usage. First of all, runtime
MetaPost processing takes time. The actual time spent on handlingembedded MetaPost
graphics is also dependent on the speed of starting up MetaPost, which in turn depends
onthe size of the TEX trees used: the biggerthese are, the more time kpse spends on load-
ingthe 1s-R databases. Eventually this bottleneck may go away when we have MetaPost
as alibrary. (In ConTgXt one can also run MetaPost between runs. Which method is faster,
depends on the amount and complexity of the graphics.)

Anotherfactorin dealing with MetaPost, is the usage of textin a graphic (btex, textext,
etc.). Taco Hoekwater, Fabrice Popineau and | did some experiments with a persistent
MetaPost session in the background in order to simulate a library. The results look very
promising: the overhead of embedded MetaPost graphics goes to nearly zero, especially
when we also let the parent TEX job handle the typesetting of texts. A side effect of these
experiments was a new mechanism in ConTgXt (and MetaFun) where TgX did all typeset-
ting of labels, and MetaPost only worked with an abstract representation of the result.
This way we can completely avoid nested TgX runs (the ones triggered by MetaPost). This
also works ok in Mkl mode.

Using a persistent MetaPost run and piping data into it is not the final solution if only
because the terminal log becomes messed up too much, and also because intercepting
errors is real messy. In the end we need a proper library approach, but the experiments
demonstrated that we needed to go this way: handling hundreds of complex graphics
that hold typeset paragraphs (being slanted and rotated and more by MetaPost), tooks
mere seconds compared to minutes when using independent MetaPost runs for each

job.

characters

Because LuaTgXis utf based, we need a different way to deal with input encoding. For this
purpose there are callbacks that intercept the inputand convertit as needed. For context
this means that the regime related modules get a Lua based counterparts. As a prelude to

10 How Luafitsin

advanced character manipulations, we already load extensive unicode and conversion
tables, with the benefit of being able to handle case handling with Lua.

The character tables are derived from unicode tables and Mkll ConTgXt data files and
generated using mtxtools. The main character table is pretty large, and this made us ex-
periment a bit with efficiency. It was in this stage that we realized that it made sense to
use precompiled Lua code (using 1uac). During format generation we let ConTgXt keep
track of used Lua files and compiled them on the fly. For a production run, the compiled
files were loaded instead.

Because at that stage LuaTgX was already a merge between pdfIgX and Aleph, we had
to deal with pretty large format files. About that moment the ConTgXt format with the
english user interface amounted to:

date luatex pdftex xetex aleph
2006-09-18 9552042 7068643 8374996 7942044

One reason for the large size of the format file is that the memory footprint of a 32 bit TEX
is larger than that of good old TgX, even with some of the clever memory allocation tech-
niques as used in LuaTgX. After some experiments where size and speed were measured
Taco decided to compress the format using a level 3 zip compression. This brilliant move
lead to the following size:

date luatex pdftex xetex aleph
2006-10-23 3135568 7095775 8405764 7973940

The first zipped versions were smaller (around 2.3 meg), but in the meantime we moved
the Lua code into the format and the character related tables take some space.

How stable are the mentioned numbers? Ten months after writing the previous text we get the
following numbers:

date luatex pdftex xetex aleph
2007-08-16 5603 676 7505925 8838538 83692006

They are all some 400K larger, which is probably the result of changes in hyphenation
patterns (we now load them all, some several times depending on the font encodings
used). Also, some extra math support has been brought in the kernel and we predefine
a few more things. However, LuaTgX's format has become much larger! Partly this is the
result of more Lua code, especially OpenType font handling and attributes related code.
The extra TpX code is probably compensated by the removal of obsolete (at least for MkIV)

How Luafitsin 11

code. However, the significantly larger number is mostly there because a different com-
pression algorithm is used: speed is now favoured over efficiency.

debugging

In the process of experimenting with callbacks | played a bit with handling TgX error in-
formation. An option is to generate an html page instead of spitting out the usual blob of
into on the terminal. In figure 2 and figure 3 you can see an example of this.

) ConTeXt Error Information - Mozilla Firefox

Fle Edt View Go Bookmarks Toos Hep

E-5p- N @ [O fiesm: manusis ua test bricstatus.homl v 0« G

3 Latest Headines
‘ || ConTeXt Error Information ‘ 8

ConTeXt Error Information

Job Name: test-brk ConTeXt Version: 2006.10.23 09:54 Real Page: 1 Page: 1

Done B o0.210s

Figurell.2 An example error screen.

Playing with such features gives us an impression of what kind of access we need to TgX's
internals. It also formed a starting point for conversion routines and a mechanism for
embedding Lua code in html pages generated by ConTgXt.

file io

Replacing TeX's in- and output handling is non-trival. Not only is the code quite inter-
woven in the webzc source, but there is also the kpse library to deal with. This means
that quite some callbacks are needed to handle the different types of files. Also, there is
output to the log and terminal to take care of.

12 How Luafits in

) ConTeXt Debug Information - Mozilla Firefox
Fle Edit View Go Bookmarks Tools Help

E-- I% O @ | ex/grr: manualsua test-bricstatus.neml ~ 0 = G |

B Latest Headines

| (] GonText Error Information | [CoriText Debug Information || [ConText Debug Information || (1 coriText Debug Information \ L] ConText Debug Information \

ConTeXt Debug Information

Scratch Variables

index dimen count toks
0 2pt 2 \The key
2 opt
opt
opt

opt

Internal Variables

ConTeXt Variables

type variable value
d 1 14.467pt

Job Name: test-brk ConTeXt Version: 2006.10.23 09:54 Real Page: 2 Page: 2

Done Eons

Figurell.3 An example debug screen.

Getting this done took us quite some time and testing and debugging was good for some
headaches. The mechanisms changed a few times, and TgX and Lua code was thrown
away as soon as better solutions came around. Because we were testing on real docu-
ments, using a fully loaded ConTgXt we could converge to a stable version after a while.

Getting this io stuff done is tightly related to generating the format and starting up LuaTgX.
If you want to overload the file searching and io handling, you need overload as soon
as possible. Because LuaTgX is also supposed to work with the existing kpse library, we
still have that as fallback, but in principle one could think of a kpse free version, in which
case the default file searching is limited to the local path and memory initialization also
reverts to the hard coded defaults. A complication is that the soure code has kpse calls
and references to kpse variables all over the place, so occasionally we run into interesting
bugs.

Anyhow, while Taco hacked his way around the code, | converted my existing Ruby based
kpse variant into Lua and started working from that point. The advantage of having our
own io handler is that we can go beyond kpse. For instance, since LuaTgX has, among a
few others, the zip libraries linked in, we can read from zip files, and keep all TiX related
files in tds compliant zip files as well. This means that one can say:

How Luafitsin 13

\input zip:///somezipfile.zip?name=/somepath/somefile.tex

and use similar references to access files. Of course we had to make sure that kpse like
searching in the tds (standardized TgX trees) works smoothly. There are plans to link the
curl library into LuaTgX, so that we can go beyong this and access repositories.

Of course, in orderto be more orless kpse and web2c compliant, we also need to support
this paranoid file handling, so we provide mechanisms for that as well. In addition, we
provide ways to create sandboxes for system calls.

Getting to intercept all log output (well, most log output) was a problem in itself. For this
| used a (preliminary) xml based log format, which will make log parsing easier. Because
we have full control over file searching, opening and closing, we can also provide more
information about what files are loaded. For instance we can now easily trace what tfm
files TEX reads.

Implementing additional methods for locating and opening files is not that complex be-
cause the library that ships with ConTgXt is already prepared for this. For instance, imple-
menting support for:

\input http://www.someplace.org/somepath/somefile.tex

involved a few lines of code, most of which deals with caching the files. Because we
overload the whole io handling, this means that the following works ok:

\placefigure

HEN

{http handling}

{\externalfigure
[http://www.pragma-ade.com/show-gra.pdf]
[page=1,width=\textwidth]}

Other protocols, like ftp are also supported, so one can say:

\typefile {ftp://anonymous:Q@ctan.org/tex-archive/systems\
/knuth/1lib/plain.tex}

On the agenda is playing with database, but by the time that we enter that stage linking
the curl libraries into LuaTgX should have taken place.

verbatim

The advance of LuaTgX also permitted us to play with a long standing wish of catcode
tables, amechanismto quickly switch between different ways of treating input characters.

14 How Luafitsin

MetaPost _ |
. Gra plﬁib"a-l'_

Once upon a time we started using METAPOST,
the graphic companion to TgX. Since then it has
been our main tool for making graphics. Wel-

come to our little showcase. You can click on the
graphic to show the real thing.

Figure Il.4 http handling

An example of a place where such changes take place is verbatim (and in ConTgXt also
when dealing with xml input).

We already had encountered the phenomena that when piping back results from Lua to
TeX, we needed to take care of catcodes so that TEX would see the input as we wished.
Earlier experiments with applying \scantokens to a result and thereby interpreting the
result conforming the current catcode regime was not sufficient or at least not handy
enough, especially in the perspective of fully expandable Lua results. To be honest, the
\scantokens command was rather useless for this purposes due to its pseudo file nature
and its end—of-file handling but in LuaTgX we now have a convenient \scantextokens
which has no side effects.

Once catcode tables were in place, and the relevant ConTgXt code adapted, | could start
playing with one of the trickier parts of TgX programming: typesetting TgX using TgX, or
verbatim. Because in ConTgXt verbatim is also related to buffering and pretty printing,
all these mechanism were handled at once. It proved to be a pretty good testcase for
writing Lua results back to TgX, because anything you can imagine can and will interfere
(line endings, catcode changes, looking ahead for arguments, etc). This is one of the
areas where MkIV code will make things look more clean and understandable, especially

How Luafitsin 15

because we could move all kind of postprocessing (needed for pretty printing, i.e. syntax
highlighting) to Lua. Interesting is that the resulting code is not beforehand faster.

Pretty printing 1000 small (one line) buffers and 5000 simple \type commands perform
as follows:

TeXnormal TgX pretty Lua normal Lua pretty

buffer 2.5(2.35) 4.5(3.05) 2.2(1.8) 2.5(2.0)
inline 7.7(4.90) 11.5(7.25) 9.1(6.3) 10.9 (7.5)

Between braces the runtime on Taco's more modern machine is shown. It's not that easy
to draw conclusions from this because TgX uses files for buffers and with Lua we store
buffers in memory. For inline verbatim, Lua call's bring some overhead, but with more
complex content, this becomes less noticable. Also, the Lua code is probably less opti-
mized than the TiX code, and we don't know yet what benefits a Just In Time Lua compiler
will bring.

xml

Interesting is that the first experiments with xml processing don't show the expected gain
in speed. This is due to the fact that the ConTgXt xml parser is highly optimized. However,
if we want to load a whole xml file, for instance the formal ConTgXt interface specification
cont-en.xml, then we can bringdown loadingtime (as well as TEX memory usage) down
from multiple seconds to a blink of the eyes. Experiments with internal mappings and
manipulations demonstrated that we may not so much need an alternative for the current
parser, but can add additional, special purpose ones.

We may consider linking xsltproc into LuaTgX, but this is yet undecided. After all, the
problem of typesetting does not really change, so we may as well keep the process of
manipulating and typesetting separated.

multipass data

Those who know ConTgXt a bit will know that it may need multiple passes to typeset a
document. ConTgXt not only keeps track of index entries, list entries, cross references,
butalso optimizes some of the output based on information gathered in previous passes.
Especially so called two—pass data and positional information puts some demands on
memory and runtime. Two-pass data is collapsed in lists because otherwise we would
run out of memory (at least this was true years ago when these mechanisms were intro-
duced). Positional information is stored in hashes and has always put a bit of a burden
on the size of a so called utility file (ConTgXt stores all information in one auxiliary file).

These two datatypes were the first we moved to a Lua auxiliary file and eventually all
information will move there. The advantage is that we can use efficient hashes (without

16 How Luafits in

limitations) and only need to run over the file once. And Lua is incredibly fast in loading
the tables where we keep track of these things. Forinstance, a testfile storing and reading
10.000 complex positions takes 3.2 seconds runtime with LuaTgX but 8.7 seconds with
traditional pdfTgX. Imagine what this will save when dealing with huge files (400 page
300 Meg files) that need three or more passes to be typeset. And, now we can without
problems bump position tracking to milions of positions.

resources

Finding files is somewhat tricky and has a history in the TEX community and its distribu-
tions. For reasons of packaging and searching files are organized in a tree and there are
rules for locating files of given types in this tree. When we say

\input blabla.tex

TeX will look for this file by consulting the path specification associated with the filetype.
When we say

\input blabla

TeX will add the . tex suffix itself. Most other filetypes are not seen by users but are dealt
with in a similar way internally.

As mentioned before, we support reading from other resources than the standard file sys-
tem, forinstance we can inputfiles from websites or read from zip archives. Although this
works quite well, we need to keep in mind that there are some conflicting interests: struc-
tured search based on type related specifications versus more or less explicit requests.

\input zip:///archive.zip?name=blabla.tex
\input zip:///archive.zip?name=/somepath/blabla.tex

Here we need to be rather precise in defining the file location. We can of course build
rather complex mechanisms for locating files here, but at some point that may backfire
and result in unwanted matches.

If you want to treat a zip archive as a TpX tree, then you need to register the file:

\usezipfile[archive.zip]
\usezipfile[tex.zip] [texmf-locall]
\usezipfile[tex.zip7tree=texmf-locall]

The first variant registers all files in the archive, but the next two are equivalent and only
registerasubtree. The registered tree is prepended to the TEXMF specification and thereby
may overload existing trees.

How Luafitsin 17

If an acrhive is not a real TEX tree, you can access files anywhere in the tree by using wild-
cards

\input */blabla.tex
\input */somepath/blabla.tex

These mechanisms evolve over time and it may take a while before they stabelize. For
instance, the syntax for the zip inclusion has been adapted more than a year after this
chapter was written (which is why this section is added).

18 How Luafits in

Il Initialization revised

Initializing LuaTEX in such a way that it does what you want it to do your way can be tricky.
This has to do with the fact that if we want to overload certain features (using callbacks)
we need to do that before the orginals start doing their work. For instance, if we want
to install our own file handling, we must make sure that the built-in file searching does
not get initialized. This is particularly important when the built in search engine is based
on the kpse library. In that case the first serious file access will result in loading the 1s-R
filename databases, which will take an amount of time more or less linear with the size
of the TgX trees. Among the reasons why we want to replace kpse are the facts that we
want to access zip files, do more specific file searches, use http, ftp and whatever comes
around, integrate ConTgXt specific methods, etc.

Although modern operating systems will cache files in memory, creating the internal data
structures (hashes) from the rather dumb files take some time. On the machine where |
was developing the first experimental LuaTgX code, we're talking about 0.3 seconds for
pdfTEX. One would expect a Lua based alternative to be slower, but it is not. This may
be due to the different implementation, but for sure the more efficient file cache plays
arole as well. So, by completely disabling kpse, we can have more advanced io related
features (like reading from zip files) at about the same speed (or even faster). In due time
we will also support progname (and format) specific caches, which speeds up loading. In
case one wonders why we bother about a mere few hundreds of milliseconds: imagine
frequent runs from an editor or sub—runs during a job. In such situation every speed up
matters.

So, back to initialization: how do we initialize LuaTgX. The method described here is de-
veloped for ConTgXt but is not limited to this macro package; when one tells TeXexec to
generate formats using the ——luatex directive, it will generate the ConTgXt formats as
well as mptopdf using this engine.

For practical reasons, the Lua based io handler is kpse compliant. This means that the
normal texmf . cnf and 1s-R files can be used. However, their content is converted in
a more Lua friendly way. Although this can be done at runtime, it makes more sense to
to this in advance using luatools. The files involved are:

input raw input runtime input runtime fallback
1s-R files.luc files.lua
texmf.lua temxf.cnf configuration.luc configuration.lua

In due time luatools will generate the directory listing itself (for this some extra libraries
need to be linked in). The configuration file(s) eventually will move to a Lua table format,
and when a texmf . 1ua file is present, that one will be used.

Initialization revised 19

luatools --generate

This command will generate the relevant databases. Optionally you can provide -—min-
imize which will generate a leaner database, which in turn will bring down loading time
to (on my machine) about 0.1 sec instead of 0.2 seconds. The ——sort option will give
nicer intermediate (. 1ua) files that are more handy for debugging.

When done, you can use luatools roughly in the same manner as kpsewhich, forinstance
to locate files:

luatools texnansi-lmrl10.tfm
luatools —--all tufte.tex

You can also inspect its internal state, for instance with:

luatools --variables --pattern=TEXMF
luatools --expansions —--pattern=context

This will show you the (expanded) variables from the configuration files. Normally you
don't need to go that deep into the belly.

The luatools script can also generate a format and run LuaTgX. For ConTgXt this is normally
done with the TgXexec wrapper, for instance:

texexec --make --all --luatex
When dealing with this process we need to keep several things in mind:

LuaTgX needs a Lua startup file in both ini and runtime mode
these files may be the same but may also be different

here we use the same files but a compiled one in runtime mode
we cannot yet use a file location mechanism

A .lucfileis a precompiled Lua chunk. In order to guard consistency between Lua code
and tex code, ConTgXt will preload all Lua code and store them in the bytecode table
provided by LuaTgX. How this is done, is another story. Contrary to these tables, the ini-
tialization code can not be put into the format, if only because at that stage we still need
to set up memory and other parameters.

In our case, especially because we want to overload the io handler, we want to store
the startup file in the same path as the format file. This means that scripts that deal with
format generation also need to take care of (relocating) the startup file. Normally we will
use TeXexec but we can also use luatools.

Say that we want to make a plain format. We can call luatools as follows:

20 Initialization revised

luatools --ini plain
This will give us (in the current path):

120,808 plain.fmt

2,650 plain.log
80,767 plain.lua
64,807 plain.luc

From now on, only the plain.fmt and plain.luc file are important. Processing a file
test \end

can be done with:

luatools --fmt=./plain.fmt test

This returns:

This is luaTeX, Version 3.141592-0.1-alpha-20061018 (Web2C 7.5.5)
(./test.tex [1])

Output written on test.dvi (1 page, 260 bytes).

Transcript written on test.log.

which looks rather familiar. Keep in mind that at this stage we still run good old Plain TgX.
In due time we will provide a few files that will making work with Lua more convenient
in Plain TgX, but at this moment you can already use for instance \directlua.

In case you wonder how this is related to ConTgXt, well only to the extend that it uses a
couple of rather generic ConTgXt related Lua files.

ConTgXt users can best use TeXexec which will relocate the format related files to the reg-
ular engine path. In luatools terms we have two choices:

luatools --ini cont-en
luatools --ini --compile cont-en

The difference is thatin the first case context . luaisused as startup file. This Luafile cre-
atesthe cont—en. luc runtimefile. Inthe second call luatools will createa cont-en. lua
file and compile that one. An even more specific call would be:

luatools --ini --compile --luafile=blabla.lua cont-en
luatools --ini --compile --lualibs=bla-1.lua,bla-2.lua cont-en

This call does not make much sense for ConTgXt. Keep in mind that luatools does not set
up user specific configurations, for instance the ——all switch in TpXexec will set up all
patterns.

Initialization revised 21

| know that it sounds a bit messy, but till we have a more clear picture of where LuaTgX is
heading this is the way to proceed. The average ConTgXt user won't notice those details,
because TgXexec will take care of things.

Currently we follow the tds and web2c conventions, but in the future we may follow dif-
ferent or additional approaches. This may as well be driven by more complexio models.
For the moment extensions still fit in. For instance, in order to support access to remote
resources and related caching, we have added to the configuration file the variable:

TEXMFCACHE = $TMP; $TEMP; $TMPDIR ; $HOME ; $TEXMFVAR ; $VARTEXMF ; .

22 Initialization revised

IV An example: CalcMath

introduction

For a long time TgX's way of coding math has dominated the typesetting world. How-
ever, this kind of coding is not that well suited for non academics, like schoolkids. Often
kids do know how to key in math because they use advanced calculators. So, when a
couple of years ago we were implementing a workflow where kids could fill in their math
workbooks (with exercises) on-line, it made sense to support so called Texas Instruments
math input. Because we had to parse the form data anyway, we could usea [[and]] as
math delimiters instead of $. The conversion too place right after the form was received
by the web server.

sin(x) + x72 + x~(1+x) + 1/x72 sin(z) + 2?2 + 27 + 4
mean (x+mean (y)) T+Yy

int(a,b,c) fbac

(1+x)/(1+x) + (1+x)/(A+(1+x) /(1+x)) L+ 1}:%

10E-2 10 x 1072

(1+x) /x Lz

(1+x) /12 L

(1+x)/-12 L

1/-12 s

12x/ (1+x) e

exp (x+exp(x+1)) erte™!

abs (x+abs(x+1)) + pi + inf |z + |x + 1|| + 7 + inf
Dx Dy %(%

D (x+D(y)) L+ 4y

Df (x) f'(x)

g(x) g(z)

sqrt (sin~2(x)+cos™2(x)) V/sin(x) + cos?(x)

An example: CalcMath 23

By combining Lua with TgX, we can do the conversion from calculator math to TEX imme-
diately, without auxiliary programs or complex parsing using TEX macros.

tex
In a ConTgXt source one can use the \calcmath command, as in:

The strange formula \calcmath {sqrt(sin~2(x)+cos”2(x))} boils
down to

One needs to load the module first, using:
\usemodule[calcmath]

Because the amount of code involved is rather small, eventually we may decide to add
this support to the MkIV kernel.

xml

Coding math in TgX is rather efficient. In xml one needs way more code. Presentation
MathML provides a few basic constructs and boils down to combining those building
blocks. Content MathML is better, especially from the perspective of applications that
need to do interpret the formulas. It permits for instance the ConTgXt content MathML
handler to adapt the rendering to cultural driven needs. The OpenMath way of coding is
like content MathML, but more verbose with less tags. Calculator math is more restrictive
than TEX math and less verbose than any of the xml variants. It looks like:

<icm>sqrt(sin~2(x)+cos”™2(x))</icm> test
And in display mode:

<dcm>sqrt(sin~2(x)+cos”™2(x))</dcm> test

speed

This script (which you can find in the ConTgXt distribution as soon as the MkIV code vari-
ants are added) is the first real TiX related Lua code that | wrote; so far | had only written
some wrapping and spell checking code for the SciTE editor. It also made a nice demo
for a couple of talks that I held at usergroup meetings. The script has a lot of expression:s.
These convert one string into another. They are less powerful than regular expressions,
but pretty fast and adequate. The feature | miss most is alternation like (1|st)uck but
it's a small price to pay. As the Lua manual explains: adding a posix compliant regexp
parser would take more lines of code than Lua currently does.

24 Anexample: CalcMath

On my machine, running this first version took 3.5 seconds for 2500 times typesetting
the previously shown square root of sine and cosine. Of this, 2.1 seconds were spent on
typesetting and 1.4 seconds on converting. After optimizing the code, 0.8 seconds were
used for conversion. A stand alone Lua takes .65 seconds, which includes loading the
interpreter. On atest of 25.000 sample conversions, we could gain some 20% conversion
time using the Lua)IT just in time compiler.

An example: CalcMath 25

26 An example: CalcMath

V Going utf

LuaTgX only understands input codes in the Universal Character Set Transformation For-
mat, aka ucs Transformation Format, better known as: utf. There is a good reason for this
universal view on characters: whatever support gets hard coded into the programs, it's
neverenough, as 25 years of TEX history have clearly demonstrated. Macro packages often
support more or less standard input encodings, as well as local standards, user adapted
ones, etc.

There is enough information on the Internet and in books about what exactly is utf. If you
don't know the details yet: utf is a multi-byte encoding. The characters with a bytecode
up to 127 map onto their normal ascii representation. A larger number indicates that the
following bytes are part of the character code. Up to 4 bytes make an utf-8 code, while
utf-16 always uses two pairs of bytes.

byte1 byte2 byte3 byteg unicode
192-223 128-191 ox8o-ox7ff
224-239 128-191 128-191 ox800-oxffff
240-247 128-191 128-191 128-191 oxi10o000-oxiffff

In utf-8 the characters in the range 128-191 are illegal as first characters. The characters
254 and 255 are completely illegal and should not appear at all since they are related to
utf-16.

Instead of providing a never-complete truckload of other input formats, LuaTgX sticks to
one input encoding but at the same time provides hooks that permits users to write filters
that preprocess their input into utf.

While writing the LuaTgX code as well as the ConTgXt input handling, we experimented a
lot. Right from the beginning we had a pretty clear picture of what we wanted to achieve
and how it could be done, but in the end arrived at solutions that permitted fast and
efficient Lua scripting as well as a simple interface.

Whatisinvolved in handlingany input encoding and especially utf?. First of all, we wanted
to support utf-8 as well as utf-16. LuaTgX implements utf-8 rather straightforward: it just as-
sumes that the input is usable utf. This means that it does not combine characters. There
is a good reason for this: any automation needs to be configurable (on/off) and the more
is done in the core, the slower it gets.

In Unicode, when a character is followed by an ‘accent’, the standard may prescribe that
these two characters are replaced by one. Of course, when characters turn into glyphs,
and when no matching glyph is present, we may need to decompose any character into
components and paste them together from glyphs in fonts. Therefore, as a first step, a

Goingutf 27

collapser was written. In the (pre)loaded Lua tables we have stored information about
what combination of characters need to be combined into another character.

So, an a followed by an ~ becomes & and an e followed by " becomes é. This process is
repeated till no more sequences combine. Afterafew alternatives we arrived atasolution
that is acceptably fast: mere milliseconds per average page. Experiments demonstrated
that we can not gain much by implementing this in pure C, but we did gain some speed
by using a dedicated loop-over—-utf-string function.

Asecond utfrelated issue is utf-16. This coding scheme comes in two endian variants. We
wanted to do the conversion in Lua, but decided to play a bit with a multi-byte file read
function. After some experiments we quickly learned that hard coding such methods in
TeX was doomed to be complex, and the whole idea behind LuaTgX is to make things less
complex. The complexity has to do with the fact that we need some control over the
different linebreak triggers, that is, (combinations of) character 10 and/or 13. In the end,
the multi-byte readers were removed from the code and we ended up with a pure Lua
solution, which could be sped up by using a multi-byte loop-over-string function.

Instead of hard coding solutions in LuaTgX a couple of fast loop-over—string functions
were added to the Lua string function repertoire and the solutions were coded in Lua. We
did extensive timing with huge utf-16 encoded files, and are confident that fast solutions
can be found. Keep in mind that reading files is never the bottleneck anyway. The only
drawback of an efficient utf-16 reader is that the file is loaded into memory, but this is
hardly a problem.

Concerning arbitrary input encodings, we can be brief. It's rather easy to loop over a
string and replace characters in the 0-255 range by their utf counterparts. All one needs
is to maintain conversion tables and TeX macro packages have always done that.

Yet another (more obscure) kind of remapping concerns those special TgX characters. If
we use a traditional TgX auxiliary file, then we must make sure that for instance percent
signs, hashes, dollars and other characters are handled right. If we set the catcode of the
percent sign to ‘letter’, then we get into trouble when such a percent sign ends up in the
table of contents and is read in under a different catcode regime (and becomes for in-
stance a comment symbol). One way to deal with such situations is to temporarily move
the problematic characters into a private Unicode area and deal with them accordingly.
In that case they no longer can interfere.

Where do we handle such conversions? There are two places where we can hook con-
verters into the input.

1. each time when we read a line from afile, i.e. we can hook conversion code into the
read callbacks

2. using the special process_input_buffer callback which is called whenever TgX
needs a new line of input

28 Goingutf

Because we can overload the standard file open and read functions, we can easily hook
the utf collapse function into the readers. The same is true for the utf-16 handler. In
ConTgXt, for performance reasons we load such files into memory, which means that we
also need to provide a special reader to TgX. When handling utf-16, we don't need to
combine characters so that stage is skipped then.

So, to summarize this, here is what we do in ConTgXt. Keep in mind that we overload the
standard input methods and therefore have complete control over how LuaTgX locates
and opens files.

1. Whenwe have a utffile, we will read from thatfile line by line, and combine characters
when collapsing is enabled.

2. When LuaTgX wants to open a file, we look into the first bytes to see if it is a utf-16
file, in either big or little endian format. When this is the case, we load the file into
memory, convert the data to utf-8, identify lines, and provide a reader that will give
back the file linewise.

3. When we have been told to recode the input (i.e. when we have enabled an input
regime) we use the normal line-by-line reader and convert those lines on the fly into
valid utf. No collapsing is needed.

Because we conduct our experiments in ConTgXt MkIV the code that we provide may
look a bit messy and more complex than the previous description may suggest. But keep
in mind that a mature macro package needs to adapt to what users are accustomed to.
The fact that LuaTgX moved on to utf input does not mean that all the tools that users use
and the files that they have produced over decades automagically convert as well.

Because we are now living in a utf world, we need to keep that in mind when we do
tricky things with sequences of characters, for instance in processing verbatim. When
we implement verbatim in pure TgX we can do as before, but when we let Lua kick in,
we need to use string methods that are utf-aware. In addition to the linked-in Unicode
library, there are dedicated iterator functions added to the string namespace; think of:

for ¢ in string.utfcharacters(str) do
something with(c)
end

Occasionally we need to output raw 8-bit code, for instance to dvi or pdf backends (spe-
cials and literals). Of course we could have cooked up a truckload of conversion func-
tions for this, but during one of our travels to a TEX conference, we came up with the
following trick.

We reserve the top 256 values of the Unicode range, starting at hexadecimal value ox110000,
for byte output. When writing to an output stream, that offset will be subtracted. So,
0Xx1100Ag9 is written out as hexadecimal byte value Ag, which is the decimal value 169,
which in the Latin 1 encoding is the slot for the copyright sign.

Goingutf 29

30 Goingutf

VI A fresh look at fonts

readers

Now that we have the file system, Lua scriptintegration, input encoding and basic logging
in place, we have arrived atfonts. Although today OpenType fonts are the fashion, we still
need to deal with TgX's native font machinery. Although Latin Modern and the TEX Gyre
collection will bring us many free OpenType fonts, we can be sure that for a long time
Typei variants will be used as well, and when one has lots of bought fonts, replacing them
with OpenType updates is not always an option. And so, reimplementing the readers for
TEX Font Metrics (t£m files) and Virtual Fonts (v£ files), was the first step.

Because Aleph font handling was integrated already, Taco decided to combine the tfm
and ofmreadersinto anew one. The combined loaderiswritten in Cand producestables
that are accessible from within Lua. A problem is that once a font is used, one cannot
simply change its metrics. So, we have to make sure that we apply changes before a font
is actually used:

\font\test=texnansi-lmr at 31.415 pt
\test Yet another nice Kate Bush song: Pi

In this example, any change to the fontmetrics has to be done before test is invoked.
For this purpose the define_font callbackis provided. Below you see an experimental
overload:

callback.register("define_font", function (name,area,size)
return fonts.patches.process(font.read_tfm(name,size))
end)

The fonts.patched. processfunction(currently in ConTeXt MkIV) implements a mech-
anism for tweaking the font parameters in between. In order to get an idea of further
features we played a bit with ligature replacement, character spacing, kern tweaking etc.
Think of such a function (or a chain of functions) doing things similar to:

callback.register("define_font", function (name,area,size)

local tfmblob = font.read_tfm(name,size) -- build in loader

tfmblob.characters[string.byte("f")].ligatures = nil

return tfmblob -- datastructure that TeX will use internally
end)

Of course the above definition is not complete, if only because we need to handle chained
ligatures as well (fl followed by i).

A fresh look at fonts 31

In practice we prefer a more abstract interface (at the macro level) but the idea stays the
same. Interesting is that having access to the internals this way already makes our TEX Live
more interesting. (We cannot demonstrate this trickery here because when this docu-
ment is processed you cannot be sure if the experimental interface is still in place.)

When playing with this we ran into problems with file searching. When performing the
backend role, LuaTgX will look in the TEX tree if there is a corresponding virtual file. It took
awhile and abitoftracing(which is notthat hard in the Lua based reader) to figure out that
the omega related path definitions in texmf . cnf files were not correct, something that
went unnoticed because omega never had a backend integrated and the dvi processors
did multiple searches to get around this.

Currently, if you want to enable extensive tracing of file searching and loading, you can
set an environment variable:

MTX.INPUT.TRACE=3

This will produce a lot of information about whatfile is asked for, what types (tex, font, etc)
determines the search, along what paths is being searched, what readers and locators are
used (file, zip, protocol), etc.

AFM

While Taco implemented the virtual font reader —eventually its data will be merged with
the tfm table— | started playing with constructing tfm tables directly. Because ConTgXt
has a rather systematic naming scheme, we can rather easily see which encoding we are
dealing with. This means that in principle we can throw all encoded tfm files out of our
tree and construct the tables using the afm file and an encoding vector.

It took us a good day to figure out the details, but in the end we were able to trick LuaTgX
into using afm files. With a bit of internal caching it was even reasonable fast. When the
basic conversion mechanism was written we tried to compare the results with existing
tfm metrics as generated by afm2tfm and afm2pl. Doing so was less trivial than we first
thought. To mention a few aspects:

heights and depths have a limited number of values in TgX

we need to convert to TX's scaled points

rounding errors of one scaled point occur

afm2tfm can only add kerns when virtual fonts are used

afm2tfm adds some extra ligatures and also does some kern magic
afm2pl adds even more kerns

the tools remove kern pars between digits

In this perspective we need not be too picky on what exactly a ligature is. An example
of a ligature is £i and such a character can be in the font. In the tfm file, the definition

32 Afresh look at fonts

of £ contains information about what to do when it's followed by an i: it has to insert a
reference (character number) pointing to the fi glyph.

However, because TgX was written in ascii time space, there was a problem of how to
get access to for instance the Spanish quotation and exclamation marks. Here the liga-
ture mechanism available in the tfm format was misused in the sense that a combination
of exclam and quoteleft becomes exclamdown. In a similar fashion will two single
quotes become a double quote. And every TgXie knows that multiple hyphens combine
into - (endash) and — (emdash), where the later one is achieved by defining a ligature
between an endash and a hyphen.

Of course we have to deal with conversions from afm units (1000 per em) to TX's scaled
points. Such conversions may be sensitive for rounding errors. Because we noticed dif-
ferences of one scaled point, | tried several strategies to get the results consistent but so
far | didn't manage to find out where these differences come from. Rounding errors seem
to be rather random and | have no clue what strategy the regular converters follow. An-
other fuzzy area are the font parameters (visible as font dimensions for users): | wonder
how many users really know what values are used and why.

You may wonder to what extend this rounding problem will influence consistent type-
setting. We have no reason to assume that the rounding error is operating system depen-
dent. This leaves the different methods used and personally | have no problems with the
direct reader being not 100% compatible with the regular tools. First of all it's an illusion
to think that TgX distributions are stable over the years. Fonts and conversion tools are
being updated every now and then, and metrics change over time (apart from Computer
Modern which is stable by definition). Also, pattern file are updated, so paragraphs may
be broken into lines different anyway. If you really want stability, then you need to store
the fonts and patterns with your document.

As we already mentioned, the regular converter programs add kerns as well. Treating
common glyph shapes similaris notuncommon in ConTgXtso | decided to provide meth-
ods foradding ‘missing’ kerns. For example, with regards to kerning, we can treateacute
the same way as an e. Some ligatures, like ae or i, need to be seenfromtwo sides: when
looked at from the left side they resemble an a and £, but when kerned at their right, they
are to be treated as e and 1i.

So, when all this is taken care of, we will have a reasonable robust and compatible way
to deal with afm files and when this variant is enabled, we can prune our TgX trees pretty
well. Also, now that we have font related tables, we can start moving tables built out of
TEX macros (think of protruding and hz) to Lua, which will not only save us much hash
entries but also permits us faster implementations.

The question may arise why there is no hard coded afm reader. Although some speed up
can be achieved by reading the table with afm data directly, there would still be the issue

A fresh look at fonts 33

of making that table accessible for manipulations as described (costs time too). The afm
formatis human readable contrary to the tfm format and therefore they can conveniently
be processed by Lua. Also, the possible manipulations may differ per macro package,
user, and even documents. The changes of users and developers reaching an agreement
about such issues is near zero. By writing the reader in Lua, a macro package writer can
also implement caching mechanisms that suits the package. Also, keep in mind that we
often only need to load about four afm files or a few more when we mix fonts.

In my main tree (regular distributions) there are some 350 files in texnansi encoding
that take over 2 MByte. My personal font tree has over a thousand such entries which
means that we can prune the tree considerably when we use the afm loader. Why bother
about ttm when afm can do the job.

In order to reduce the overhead in reading the afm file, we now use external caching,
which (in ConTgXt MkIV) boils down to serializing the internal afm tables and compiling
them to bytecode. As a result, the runtime becomes comparable to a run using regular
tfm files. On this document usign the afm reader (cached) takes some .3 seconds more
on 8 seconds total (28 pages in Optima Nova with a couple of graphics).

While we were playing with this, Hermann Zapf surprised me by sending me a cd with
his marvelous new Palatino Sans. So, instead of generating tftm metrics, | decided to use
ttf2afm to generate me an afm file from the TrueType files and use these metrics. It
worked right out of the box which means that one can copy a set of font files directly
from the source to the tree. In a demo document the Palatino Sans came out quite well
and so we will use this font to explore the upcoming Open Type features.

Because we now have less font resources (only two files per font) we decided to get away
from the spread-all-over-the-tree paradigm. For this we introduced

../fonts/data/vendor/collection
like:

./fonts/data/tex/latin-modern
./fonts/data/tex-gyre/bonum
./fonts/data/linotype/optima-nova
./fonts/data/linotype/palatino-nova
./fonts/data/linotype/palatino-sans

Of course one needs to adapt the related font paths in the configuration files but getting
that done in tex distributions is another story.
map files

Reading an afm file is only part of the game. Because we bypass the regular tfm reader
we may internally end up with different names of fonts (and/or files). This also means

34 Afresh look at fonts

that the map files that map an internal name onto an font (outline) file may be of no use.
The map file also specifies the encoding file which maps character numbers onto names
used in font files.

The map file maps a font name to a (preferable outline) font resource file. This can be a
file with suffix pfb, ttf, otf or alike. When we convert am afm file into a more suitable
format, we also store the associated (outline) filename, that we use later when we assem-

ble the map line data (we use \pdfmapline to tell LuaTgX how to prepare and embed a
file.

Eventually LuaTeX will take care of all these issues itself thereby rendering map files and
encoding files kind of useless. When loading an afm file we already have to read en-
coding files, so we have all the information available that normally goes into the map
file. While conducting experiments with reading afm files, we therefore could use the
\pdfmapline primitive to push the right entries into font inclusion machinery. Because
ConTgXt already handles map data itself we could easily hook this into the normal han-
dlers for that. (There are some nasty synchronization issues involved in handling map
entries in general but we will not bother you with that now).

Although eventually we may get rid of map files, we also used the general map file han-
dling in ConTgXt as a playground for the xml handler that we wrote in Lua. Playing with
many map files (a few KBytes) coded in xml format, or with one big map file (easily 800
MBytes) makes a good test case for loading and dumping

But why bother too much about map files in LuaTgX . . . they will go away anyway.

OTF & TTF

One of the reasons for starting the LuaTgX development was that we wanted to be able
to use OpenType (and TrueType) fonts in pdfTEX. As a prelude (and kind of transition) we
first dealt with Type1 using either tfm or afm. For TgX it does not really matter what font
is used, it only deals with dimensions and generic characteristics. Of course, when fonts
offer more advanced possibilities, we may need more features in the TgX kernel, but think
of hz or protruding as provided by pdfTgX: it's not part of the font (specification) but of the
engine. The same is actually true for kerning and ligature building, although here the font
(data) may provide the information needed to deal with it properly.

OpenType fonts come with features. Examples of features are using oldstyle figures or
tabular digits instead of the default ones. Dealing with such issues boils down to replac-
ing one character representation by another or treating combinations of character in the
input differently depending on the circumstances. There can be relationships between
languages and scripts, but, as TgXies know, other relationships exist as well, for instance
between content and visualization.

Afresh look at fonts 35

Therefore, it will be no surprise that LuaTgX does not simply implement the OpenType
specification as such. On the one hand itimplements a way to load information stored in
the font, on the other hand itimplements mechanisms to fullfil the demands of such fonts
and more. The glue between both is done with Lua. In the simple case of ligatures and
kerns this goes as follows. A user (or macropackage) specified a font, and this call can be
intercepted usinga callback. This callback can use a builtin function thatloads an otf or ttf
font. From this table, a font table is constructed that is passed on to TgX. The construction
may involve building ligature and kerning tables using the information present in the font
file, butitmay as well mean more. So, given a bare LuaTgX system, OpenType fontsupport
is not giving you automatically handling of features, or more precisely, there is no hard
coded support for features.

This may sound as a disadvantage but as soon as you start looking at how TgX users use
their system (in most cases by using a macro package) you may understand that flexibility
is larger this way. Instead of adding more and more control and exceptions, and thereby
making the kernel more instable and complex, we delegate control to the macro pack-
age. The advantage is that there are no (everlasting) discussions on how to deal with
things and in the end the user will use a high level interface anyway. Of course the macro
package needs proper access to the font's internals, but this is provided: the code used
for reading in the data comes from FontForge (an advanced font editor) and is presented
via Lua tables in a well organized way.

Given that users expect OpenType features to be supported, how do we provide aninter-
face. In ConTgXt the user interface has always be an important aspect and consistency is
a priority. On the other hand, there has been the tradition of specifying the size explicity
and a new custom introduced by XjIgX to enhance fontname with directives. Traditional
TEX provides:

\font \name filename [optional size]
XJIEX accepts

\font \name "fontnamel[:optional features]" [optional size]
\font \name fontnamel[:optional features] [optional size]

Instead of afontname one can pass a filename between square brackets. LuaTgX handles:

\font \name anything [optional size]
\font \name {anything} [optional size]

where anything as well as the size are passed on to the callback.

This permits us to implement a traditional specification, support XjIgX like definitions, and
easily pass information from a macro package down to the callback as well. Interpreting
anything is done in Lua.

36 Afreshlook at fonts

While implementing the Lua side of the loader we took a similar approach as the afm
reader and cached intermediate tables as well as keep track of font names (in addition
to filenames). In order to be able to quickly determine the (internal) font name of an
OpenType font, special loader functions are provided.

The size is kind of special, because we can have specifications like

at 10pt
at 3ex
at \dimexpr\bodyfontsize+lpt\relax

This means that we need to handle that on the TgX side and pass the calculated value to
the callback.

Virtual fonts have a rather special nature. They permit you to define variations of fonts
using other fonts and special (dvi related) operators. However, from the perspective of
TeX itself they don't exist at all. When you create a virtual font you also end up with a
tfm file and TgX only needs this file, which defined characters in terms of a width, height,
depth and italic correction as well as associates characters with kerning pairs and liga-
tures. TEX leaves it to the backend to deal the actual glyphs and therefore the backend
will be confronted by the internals of a virtual font. Because pdfTgX and therefore LuaTgX
has the backend built in, it is capable of handling virtual fonts information.

In LuaTgX you can build your own virtual font and this will suit us well. It permits us for
instance to complete fonts that lack certain characters (glyphs) and thereby let us get rid
of ugly macro based fallback trickery. Although in ConTgXt we will provide a high level
interface, we will give you a taste of Lua here.

callback.register("define_font", function(name,size)

if name == "demo" then
local f = font.read _tfm('texnansi-lmri0',size)
if f then

local capscale, digscale = 0.85, 0.75
f.name, f.type = name, 'virtual'
f.fonts = {
{ name="texnansi-lmr10" , size=size },
{ name="texnansi-lmss10", size=size*capscale },
{ name="texnansi-lmtt10", size=sizex*digscale }
+
for k,v in pairs(f.characters) do
local chr = utf.char(k)
if chr:find("[A-Z]") then
v.width = capscale*v.width
v.commands = {

Afresh look at fonts 37

{"special”,"pdf: 1 0 O rg"},
{"font",2}, {"char",6k},
{"special","pdf: 0 g"}
+
elseif chr:find("[0-9]") then
v.width = digscale*v.width
v.commands = {
{"special","pdf: 0 0 1 rg"},
{"font",3}, {"char",bk},
{"special","pdf: 0 g"}
+
else
v.commands = {
{"font",1}, {"char",k}

}
end
end
return f
end
end
return font.read_tfm(name,size)
end)

Here we define a virtual font that uses three real fonts and which font is used depends on
the kind of character we're dealing with (inreal world situations we can best use the MkIV
function that tells what class a character belongs to). The commands table determines
what glyphs comes out in what way. We use a bit of literal pdf code to color the special
characters but generally color is not handled at the font level.

This example can be used like:

\font\test=demo \test

Hi there, this is the first (number 1) example of playing with
Virtual Fonts, some neat feature of \TeX, once you have access
to it. For instance, we can misuse it to fill in gaps in fonts.

During development of this mechanism, we decided to save some redundant loading by
permitting id's in the fonts array:

callback.register("define_font", function(name,size)

if name == "demo" then
local f = font.read tfm('texnansi-lmri0Q',size)
if £ then

local id = font.define(f)

38 Afresh look at fonts

local capscale, digscale = 0.85, 0.75
f.name, f.type = name, 'virtual'
f.fonts = {

{ id=iqd },

{ name="texnansi-lmss10", size=size*capscale 1},
{ name="texnansi-lmtt10", size=sizex*digscale }

+
for k,v in pairs(f.characters) do
local chr = utf.char(k)
if chr:find("[A-Z]") then
v.width = capscale*v.width
v.commands = {
{"special","pdf: 1 0 O rg"},
{"slot",2,k},
{"special","pdf: 0 g"}
}
elseif chr:find("[0-9]") then
v.width = digscale*v.width
v.commands = {
{"special”,"pdf: 0 0 1 rg"},
{"slot",3,k},
{"special","pdf: 0 g"}
}
else
v.commands = {
{"slot",1,k}

}
end
end
return f
end
end
return font.read_tfm(name,size)
end)

Hardwiring fontnames in callbacks this way does not deserve a price and when possible
we will provide better extension interfaces. Anyhow, in the experimental ConTgXt code

we used calls like this, where demo is an installed feature.

\font\myfont = special@demo-1 at 12pt \myfont

Hi there, this is the first (number 1) example of playing with Vir-

tual Fonts,

A fresh look at fonts

some neat feature of \TeX, once you have access to it. For instance,
we can
misuse it to fill in gaps in fonts.

Hi there, this is the first (number 1) example of playing with Virtual Fonts, some neat
feature of TgX, once you have access to it. For instance, we can misuse it to fill in gaps

in fonts.

Keep in mind that this is just an example. In practice we will not do such things at the font
level but by manipulating TgX's internals.

While developingthis functionality and especially when Taco was programming the back-
end functionality, we used more sane MkIV code. Think of (still Lua) definitions like:

\ctxlua {
fonts.define.methods.install ("weird", {
{ "copy-range", "lmromanlO-regular" } ,
{ "copy-char", "lmromanlO-regular", 65, 66 } ,
{ "copy-range", "lmsanslO-regular", 0x0100, OxO1FF } ,
{ "copy-range", "lmtypewriteriO-regular", 0x0200, OxFFOO }

{ "fallback-range", "lmtypewriterl1O-regular", 0x0000, 0x0200
b
1)
b

Again, this is not the final user interface, but it shows the direction we're heading. The
result looks like:

\font\test={myfont@weird} at 12pt \test
\eacute \rcaron \adoublegrave \char65

This shows up as:
éraB
Here the @ tells the (new) ConTgXt font handler what constructor should be used.

Because some testers already have X3IgX font support files, we also support a XjIgX like
definition syntax.

\font\test={lmromanlO-regular:dlig;liga}\test

f i fi ffi \crlf

f i f\kernOpti f\kernOptf\kernOpti \crlf

\char64259 \space\char64256 \char105 \space \char102\char102\char105

40 Afresh look at fonts

This gives:

fififh
fififfi
fii fii i

We are quite tolerant with regards to this specification and will provide less dense meth-
ods as well. Of course we need to implement a whole bunch of features but we will do
this in such a way that we give users full control.

encodings

By now we've reached a stage where we can get rid of font encodings. We now have
the full unicode range available and no longer depend on the font encoding when we
hyphenate. In a previous chapter we discussed the difference in size between formats.

date luatex pdftex
2006-10-23 3135568 7095775
2007-02-18 33732006 7426 451
2007-02-19 3060103 7426 451

The size of the formats has grown a bit due to a few more patterns and a extra preloaded
encoding. But the LuaTgX format shrinks some 10% now that we can get rid of encod-
ing support. Some support for encodings is still present, so that one can keep using the
metric files that are installed (for instance in project related trees that have special fonts)
although afm/Typei files or OpenType fonts will be used when available.

A couple of years from now, we may throw away some Lua code related to encodings.

files

TeX distributions tend to be rather large, both in terms of files and bytes. Fonts take most
of the space. The merged TXLive 2007 trees contain some 60.000 files that take 1.123
MBytes. Of this, 25.000 files concern fonts totaling to 431 MBytes. A recent ConTgXt
distribution spans 1200 files and 20 MBytes and a bit more when third party modules are
taken into account. The fonts in TgXLive are distributed as follows:

format files bytes
AFM 1.769 123.068.970 443 22.290.132
TFM 10.613 44.915.448 2.346 8.028.920
VF 3.798 6.322.343 861 1.391.684
TYPE1 2.904 180.567.337 456 18.375.045
TRUETYPE 22 1.494.943

Afresh look at fonts 41

OPENTYPE 144 17.571.732

ENC 268 782.680
MAP 4006 6.098.982 110 129.135
OFM 39 10.309.792
OVF 39 413.352
ovp 22 2.698.027

SOURCE 4.736 25.932.413

We omitted the more obscure file types. The last two columns show the numbers for one
of my local font trees.

In due time we will see a shift from Type1 to OpenType and TrueType files and because
these fonts are more complete, they may take some more space. More important is that
the TEX specific font metric files will phase out and the less Type1 fonts we have, the less
afm companions we need (afm files are not compressed and therefore relatively large).
Mapping and encoding files can also go away.

In LuaTgX we can do with less files, but the number of bytes may grow a bit depending
on how much is catched (especially fonts). Anyhow, we can safely assume that a LuaTgX
based distributions will carry less files and less bytes around.

fallbacks

Do we need virtual fonts? Currently in ConTgXt, when a font encoding is chosen, a fall-
back mechanism stepsin assoon as a characteris notin the encoding. So far, so good. But
occasionally we run into a font that does not (completely) fits an encoding and we end
up with defining a non standard one. In traditional TgX a side effects of font encodings is
that they relate to hyphenation. ConTgXt can deal with that comfortably and multiple in-
stances of the same set of hyphenation patterns can be loaded, but for custom encodings
this is kind of cumbersome.

In LuaTeX we have just one font encoding: Unicode. When OpenType fonts are used, we
don't expect many problems related to missing glyphs, but you can bet on it that they will
occur. This is where in ConTeXt MkIV fallbacks will be used and this will be implemented
using vitual fonts. The advantage of using virtual fonts is that we still deal with proper
characters and hyphenation will take place as expected. And since virtual fonts can be
defined on the fly, we can be flexible in our implementation. We can think of generic
fallbacks, not much different than macro based representations, or font specific ones,
where we even may rely on MetaPost for generating the glyph data.

How do we define a fall back character. When building this mechanism | used the ‘¢” as
an example. A cent symbol is roughly defined as follows:

42 Afresh look at fonts

local t = table.fastcopy(g.characters[0x0063]) -- mkiv function
local s = fonts.tfm.scaled(g.fonts[1].size) -- mkiv function
t.commands = {

{"push"},

{"slot", 1, c},

{"pop"},

{"right", .5*t.width},

{"down", .2x%t.height},

{"rule", 1.4xt.height, .02x*s}

i
t.height = 1.2%t.height
t.depth = 0.2*t.height

Here, g is aloaded font (table) which has type virtual. The first fontin the fonts array
is the main font. What happens here is the following: we assign the characteristics of ‘c’
to the cent symbol (this includes kerning and dimensions) and then define a command
sequence that draws the ‘c’ and a vertical rule through it.

The real code is slightly more complicated because we need to take care of italic prop-
erties when applicable and because we have added some tracing too. While playing
with this kind of things, it becomes clear what features are handy, and the reason that we
now have a virtual command comment is that it permits us to implement tracing (using
for instance color specials).

C C c § é a 1 O 10D
c ¢ s é 4 4 O I b
The previous lines are typeset using a similar specification as mentioned before:

\font\test=1lmromanl0-regular@demo-2

Without the fallbacks we get:

c ¢ ¢ ¢ S é a u
c ¢ © ¢ S € a4 U

And with normal (non forced fallbacks) it looks as follows. As it happens, this font has a
cent symbol so no fallback is needed.

v /

c ¢ccec s é a i O b
i i O

I
I b

c ¢ ¢ @ S é

Afresh look at fonts 43

The font definition callback intercepts the demo-2 and a couple of chained lua functions
make sure that characters missing in the fontare replaced by fallbacks. In the case of miss-
ing composed characters, they are constructed from their components. In this particular
example we have told the handler to assume that all composed characters are missing.

memory

Traditional TgX has been designed for speed and a small memory footprint. Todays im-
plementations are considerably more generous with the amount of memory that you can
use (hash, fonts, main memory, patterns, backend, etc). Depending on how complicated
a document layout it, memory may run into tens of megabytes.

Because LuaTgX is not only suitable for wide fonts, but also does away with some of the
optimizations in the TgX code that complicate extensions, it has a larger footprint that
pdfTEX. When implementing the OpenType font basics, we did quite some tests with re-
spect to memory usage. Getting the numbers right is non trivial because the Lua garbage
collector is interfering. For instance, on my machine a test file with the regular ConTgXt
setup of of Latin Modern fonts made Lua allocate 130 MB, while the same run on Taco's
machine took 100 MB.

When a font data table is constructed, it is handled over to TgX, and turned into the in-
ternal font data structures. During the construction of that TAB|E at the Lua end, ConTgXt
MKIV disables the garbage collector. By doing this, the time needed to construct and
scale a font can be halved. Curious to the amount of memory involved in passing such a
table, I added the following piece of code:

if type(fontdata) == "table" then
local s = statistics.luastate_bytes
local t = table.copy(fontdata)
local d = statistics.luastate_bytes-s

texio.write_nl(string.format("table memory footprint: %s",d))
end

It turned out that a Regular Latin Modern font (OpenType) takes around 8oo KB. How-
ever, more interesting was that by adding this snippet of testcode which duplicted the
table in order to measure its size, the total memory footprint dropped to 100 MB (about
the amount used on Taco's machine). This demonstrates that one should be very careful
with drawing conclusions.

Because fonts are rather important in TEX and because there can be lots of them used, it
makes sense to keep an eye on memory as well as performance. Because many manipu-
lations now take place in Lua, it no longer makes sense to let TEX buffer fonts. In plain TX
one finds these magic

44 Afresh look at fonts

\font\preloaded=cmr10
\font\preloaded=cmri2

lines. The second definitions obscures the first, but the cmr10 stays loaded.

\font\one=cmr10 at 10pt
\font\two=cmr10 at 10pt

These two definitions make TgX load the font only once. However, since we can now
delegate loading to Lua, TEX no longer helps us there. Forinstance, TeX has no knowledge
to what extend this cmr10 font has been manipulated and therefore both instances may
actually differ.

When you use a callback to define the font, TgX passes a font id number. You can use
this number as a reference to a loaded font (that is, passed to TgX). If instead of a table,
you return a number, TEX will reuse the already loaded font. This feature can save you
a lot of time, especially when a macro package (like ConTgXt) defines fonts dynamically
which means that when groupingis used, fonts get (re)defined a lot. Of course additional
caching can take place at the Lua end, but there one needs to take into account more
than just the scaled instance. Think of OpenType features or virtual font properties. The
following are quite certainly different setups, in spite of the common size.

\font\one=1mr10@demo-1 at 10pt
\font\two=1lmr10@demo-2 at 10pt

When scaling a font, one not only needs to handle the regular glyph dimensions, but
also the kerning tables. We found out that dealing with such issues takes some 25% of
the time spent on loading Latin Modern fonts that have rather extensive kerning tables.
When creating a virtual font, copying glyph tables may happen a lot. Deep copying ta-
bles takes a bit of time. This is one of the reasons why we discussed (and consider) some
dedicated support functions so that copying and recalculating tables happens faster (less
costly hash lookups and such). On the other hand, the time wasted on calculations (in-
cluding rounding to scaled points) can be neglected.

The following table shows what happens when we enforce a different garbage collecting
scheme. This test was triggered by another experiment where at regular time, for instance
after a pag eis shipped out, say

collectgarbage("collect")

However, such a complete sweep has drastic consequences for the runtime. But, since
the memory footprint becomes 10-15% less by doing so, we played a bit with

collectgarbage("setstepmul", somenumber)

Afresh look at fonts 45

When processing a not so large file but one that loads a bunch of open type fonts, we get
the following values. The left set is on linux (Taco's machine) and the right set in mine.

stepmul run(s) mem (MB) run(s) mem (MB)

200 1.58 69.14 5.6 84.17
1000 1.63 69.14 6.5 72.32
2000 1.64 60.66 6.8 73.53

10000 1.71 59.94 7.0 72.30

Since | use an old laptop running Windows with a probably different TgX configuration
(fonts), and under some load, both columns don't compare well, but the general idea is
the same. For practical usage a value of 1000 is probably best, especially because mem-
ory intensive font and script loading only happens at the first couple of pages.

46 Afresh look at fonts

VIl Token speak

tokenization

Most TeX users only deal with (keyed in) characters and (produced) output. Some will play
with boxes, skips and kerns or maybe even leaders (repeated sequences of the former).
Others will be grateful that macro package writers take care of such things.

Macro writers on the other hand deal properties of characters, like catcodes and a truck-
load of other codes, with lists made out of boxes, skips, kerns and penalties but even they
cannot look much deeper into TgX's internals. Their deeper understanding comes from
reading the TEXbook or even looking at the source code.

When someone enters the magic world of TEX and starts asking around on a bit, he or she
will at some point get confronted with the concept of ‘tokens’. A token is what ends up
in TEX after characters have entered its machinery. Sometimes it even seems that one is
only considered a qualified macro writer if one can talk the right token-speak. So what
are those magic tokens and how can LuaTgX shed light on this.

Inamomentwe will show examples of how LuaTgX turns characters into tokens, butwhen
looking at those sequences, you need to keep a few things in mind:

e Asequence of characters that starts with an escape symbol (normally this is the back-
slash) is looked up in the hash table (which relates those names to meanings) and re-
placed by its reference. Such a reference is much faster than looking up the sequence
each time.

e Characters can have special meanings, for instance a dollar is often used to enter and
exitmath mode, and a percent symbol starts a comment and hides everything follow-
ing it on the same line. These meanings are determined by the character's catcode.

e All the characters that will end up actually typeset have catcode ‘letter’ or ‘other’ as-
signed. A sequence of items with catcode ‘letter’ is considered a word and can po-
tentially become hyphenated.

examples

We will now provide a few examples of how TgX sees your input.

Hi there!

Hi there!

cmd chr id name
letter 72 H

Token speak 47

letter 105 1
spacer 32
letter 116 t
letter 104 h
letter 101 e
letter 114 r
letter 101 e
]

other_char 33

Here we see three kind ot tokens. At this stage a space is still recognizable as such but
later this will become a skip. In our current setup, the exclamation mark is not a letter.

Hans \& Taco use Lua\TeX \char 33\relax

Hans & Taco use LuaTgX!

cmd chr id name
letter 72 H

letter 97 a

letter 110 n

letter 115 s

spacer 32

char_given 38 40 &
spacer 32

letter 84 T

letter 97 a

letter 99 c¢

letter 111 o

spacer 32

letter 117 u

letter 115 s

letter 101 e

spacer 32

letter 76 L

letter 117 u

letter 97 a

call 343589 634216 TeX
char_num 0 1518 char
other_char 51 3

other_char 51 3

relax 1114112 3380 relax

Here we see afew new tokens, a‘char_given”and a‘call’. The firstrepresentsa \chardef
i.e. areference to a character slot in a font, and the second one a macro that will expand

48 Token speak

to the TEX logo. Watch how the space after a control sequence is eaten up. The exclama-
tion mark is a direct reference to character slot 33.

\noindent {\bf Hans} \par \hbox{Taco} \endgraf

Hans

Taco

cmd chr id name
start_par 0 27846 noindent
left_brace 123

call 306816 300 bf
letter 72 H

letter 97 a

letter 110 n

letter 115 s

right_brace 125

spacer 32

par_end 1114112 758 par
make_box 131 1568 hbox
left_brace 123

letter 84 T

letter 97 a

letter 99 c¢

letter 111 o

right_brace 125

spacer 32

par_end 1114112 13162 endgraf

As you can see, some primitives and macro's that are bound to them (like \endgraf)
have an internal representation on top of their name.

before \dimen2=10pt after \the\dimen2

before after 10.0pt

cmd chr id name
letter 98 b

letter 101 e

letter 102 £

letter 111 o

letter 114 r

letter 101 e

spacer 32

Token speak 49

register 2 3190 dimen

other_char 50 2
other_char 61 =
other_char 49 1

other _char 48 0

letter 112 p

letter 116 t

spacer 32

letter 97 a

letter 102 £

letter 116 t

letter 101 e

letter 114 r

spacer 32

the 0 775 the
register 2 3190 dimen

other_char 50 2

Asyou can see, registers are not explicitly named, one needs the associated register code
to determine it's character (a dimension in our case).

before \inframed[width=3cm]{whatever} after

before whatever after

cmd chr id name
letter 98 b

letter 101 e

letter 102 f

letter 111 o

letter 114 r

letter 101 e

spacer 32

call 103059 630062 inframed
other_char 91 [

letter 119 w

letter 105 i

letter 100 d

letter 116 t

letter 104 h

other_char 61 =

other_char 51 3

letter 99 ¢

50 Token speak

letter 109 m
other_char 93]
left_brace 123

letter 119 w
letter 104 h
letter 97 a
letter 116 t
letter 101 e
letter 118 v
letter 101 e
letter 114 r
right_brace 125

spacer 32

letter 97 a
letter 102 f
letter 116 t
letter 101 e
letter 114 r

As you can see, even when control sequences are collapsed into a reference, we still end
up with many tokens, and because each token has three properties (cmd, chr and id) in
practice we end up with more memory used after tokenization.

compound | - |word

compound-word

cmd chr id name
letter 99 ¢

letter 111 o

letter 109 m

letter 112 p

letter 111 o

letter 117 u

letter 110 n

letter 100 d

call 79496 3184 |
other_char 45 -

call 79496 3184 |
letter 119 w

letter 111 o

letter 114 r

letter 100 d

Token speak 51

This example uses an active character to handle compound words (a ConTgXt feature).
hm, \directlua O { tex.sprint("Hello World") }

hm, Hello World!

cmd chr id name
letter 104 h
letter 109 m
other_char 44
spacer 32
convert 23 52845 directlua
other_char 48 O
spacer 32
left_brace 123
spacer 32
letter 116 t
letter 101
letter 120
other_char 46 .
letter 115 s
letter 112 p
letter 114 r
letter 105 1
letter 110 n
letter 116 t
other_char 40 (

other_char 34

letter 72 H
letter 101 e
letter 108 1
letter 108 1
letter 111 o
spacer 32
letter 87 W
letter 111 o
letter 114 r
letter 108 1
letter 100 d
]

other_char 33
other_char 34 "
other_char 41)

52 Token speak

spacer 32
right_brace 125

The previous example shows what happens when we include a bit of lua code . . . itis
just seen as regular input, but when the string is passed to Lua, only the chr property is
passed, so we no longer can distinguish between letters and other characters.

A macro definition converts to tokens as follows.

[BI[A]

cmd chr
def 0
undefined_cs 0
mac_param 35
other_char 49
mac_param 35
other_char 50
left_brace 123
other_char 91
mac_param 35
other_char 50
other_char 93
other_char 91
mac_param 35
other_char 49
other_char 93
right_brace 125
spacer 32
undefined cs 0
left_brace 123
letter 65

right_brace 125
left_brace 123
letter 66
right_brace 125

id name
706 def
1424 Test
1424 Test

As we already mentioned, a token has three properties. More details can be found in the
reference manual so we will not go into much detail here. A stupid callback looks like:

callback.register('token_filter', token.get_next)

In principle you can call token.get_next anytime you want to intercept a token. In
that case you can feed back tokens into TeX by using a trick like:

Token speak 53

function tex.printlist(data)
callback.register('token_filter', function ()
callback.register('token_filter', nil)
return data
end)
end

Another example of usage is:

callback.register('token_filter', function ()
local t = token.get_next
local cmd, chr, id = t[1], t[2], t[3]
-- do something with cmd, chr, id
return { cmd, chr, id }
end)

There is a whole repertoire of related functions, one is token. create, which can be
used as:

tex.printlist{
token.create("hbox"),
token.create(utf.byte("{"), 1),
token.create(utf.byte("?"), 12),
token.create(utf.byte("}"), 2),
+

This results in: ?
While playing with this we made a few auxiliary functions which permit things like:

tex.printlist (table.unnest ({
tokens.hbox,
tokens.bgroup,
tokens.letters("12345"),
tokens.egroup,

D))

Unnesting is needed because the result of the 1etters call is a table, and the print-
1list function wants a flattened table.

The result looks like: 12345

cmd chr id name

make_box 131 1568 hbox
left_brace 123

54 Token speak

letter 49 1
letter 50 2
letter 51 3
letter 52 4
letter 53 b

right_brace 125

In practice, manipulating tokens or constructing lists of tokens this way is rather cumber-
some, but at least we now have some kind of access, if only for illustrative purposes.

\hbox{12345\hbox{54321}}

can also be done by saying:

tex.sprint ("\\hbox{12345\\hbox{54321}}")

or under ConTgXt's basic catcode regime:
tex.sprint(tex.ctxcatcodes, "\\hbox{12345\\hbox{54321}1}")
If you like it the hard way:

tex.printlist (table.unnest ({
tokens.hbox,
tokens.bgroup,
tokens.letters("12345"),
tokens.hbox,
tokens.bgroup,
tokens.letters(string.reverse("12345")),
tokens.egroup,
tokens.egroup

LADND

This method may attract those who dislike the traditional TgX syntax for doing the same
thing. Okay, a carefull reader will notice that reversing the string in TgX takes a bit more
trickery, so . ..

Token speak 55

56 Token speak

VIII How about performance

remark

The previous chapters already spent some words on performance and memory usage. By
the time that Taco and | were implementing, discussing and testing the callbacks related
to node lists, we were already convinced thatin all areas covered so far (file management,
handling input characters, dealing with fonts, conversion to tokens, string and table ma-
nipulation, enz.) the TEX-Lua pair was up to the task And so we were quite confident that
processing nodes was not only an important aspect of LuaTgX but also quite feasable in
terms of performance (after all we needed it in order to deal with advanced typesetting
of Arab). When Taco was dealing with the TgX side of the story, | was experimenting with
possible mechanisms at the Lua end.

At the same time | got the opportunity to speed up the MetaPost to pdf converter and
both activities involved some timing. Here | report some of the observations that we
made in this process.

parsing

Expressions in Lua are powerful and definitely faster than regular expressions found in
other languages, but they have some limits. Most noticeably is the lack of alternation. In
Ruby one can say:

str = "there is no gamma in here, just an beta"

if str =~ /(alph|bet|delt)a/ then
print ($1)
end

butin Lua you need a few more lines:

str = "there is no gamma in here, just an beta"

for _, v in pairs({'alpha', 'beta','delta'}) do
local s = str:match(v)

if s then
print(s)
break
end

end

How about performance 57

Interesting is that upto now | didn't really miss alternation but it may as well be that the
lack of it drove me to come up with different solutions. For ConTgXt MkIV the MetaPost
to pdf converter has been rewritten in Lua. This is a prelude to direct Lua output from
MetaPost but | needed the exercise. It was among the first Lua code in MkIV.

Progressive (sequential) parsing of the data is an option, and is done in Mkll using pure
TeX. We collect words and compare them to PostScript directives and act accordingly.
The messy parts are scanning the preamble, which has specials to be dealt with as well as
lots of unpredictable code to skip, and the f show command which adds text to a graphic.
But real dirty are the code fragments that deal with setting the line width and penshapes
so the cleanup of this takes some time.

In Lua a different approach is taken. There is an mp table which collects a lot of functions
that more or less reflect the output of MetaPost. The functions take care of generating the
right pdf code and also handle the transformations needed because of the differences
between PostScript and pdf.

The sequential PostScript that comes from MetaPost is collected in one string and con-
verted using gsub into a sequence of Lua function calls. Before this can be done, some
cleanup takes place. The resulting string is then executed as Lua code.

As an example:

10020 0 curveto
becomes
mp.curveto(1,0,0,2,0,0)
which results in:

\pdfliteral{1 0 0 2 0 O c}

In between, the path is stored and transformed which is needed in the case of penshapes,
where some PostScript feature is used that is not available in pdf.

Duringthe development of LuaTgX a new feature was added to Lua: 1peg. With 1pegyou
can define text scanners. In fact, you can build parsers for languages quite conveniently
so without doubt we will see it show up all over MkIV.

Since | needed an exercise to get accustomed with 1peg, | rewrote the mentioned con-
verter. I'm sure that a better implementation is possible than | did (after all, PostScript is
a language) but | went for a speedy solution. The following table shows some timings.

gsub lpeg

58 How about performance

2.5 0.5 100 times test graphic
9.2 1.9 100 times big graphic

The test graphic has about everything that MetaPost can output, including special tricks
that deal with transparency and shading. The bigone is justfour copies of the test graphic.

So, the 1peg based variant is about 5 times faster than the original variant. I'm not saying
that the original implementation is that brilliant, but a 5 time improvement is rather nice
especially when you consider that 1peg is still experimental and each version performs
better. The tests were done with 1peg version 0.5 which performs slightly faster than its
predecessor.

It's worth mentioning that the original gsub based variant was already a bit improved
compared to its first implementation. There we collected the TgX (pdf) code in a table
and passed it in its concatenated form to TgX. Because the Lua to TgX interface is by now
quite efficient we can just pass the intermediate results directly to TgX.

file io

The repertore of functions that deal with individual characters in Lua is small. This does
not bother us too much because the individual character is not what TgX is mostly dealing
with. A character or sequence of characters becomes a token (internally represented by
atable) and tokens result in nodes (again tables, but larger). There are many more tokens
involved than nodes: in ConTgXt a ratio of 200 tokens on 1 node are not uncommon. A
letter like x become a token, but the control sequence \command also ends up as one
token. Later on, this x may become a character node, possibly surrounded by some kern-
ing. The input characters width resultin 5 tokens, but may not end up as nodes at all, for
instance when they are part of a key/value pair in the argument to a command.

Just as there is no guaranteed one-to-one relationship between input characters and
tokens, there is no straight relation between tokens and nodes. When dealing with input
itis good to keep in mind that because of these interpretation stages one can never say
that 1 megabyte of input characters ends up as 1 million something in memory. Just think
of how many megabytes of macros get stored in a format file much smaller than the sum
of bytes.

We only deal with characters or sequences of bytes when reading from an input medium.
There are many ways to deal with the input. For instance one can process the input lines
as TgX sees them, in which case TgX takes care of the utf input. When we're dealing with
other input encodings we can hook code into the file openers and readers and convert
the raw data ourselves. We can for instance read in afile as a whole, convert it using the
normal expression handlers or the byte(pair) iterators that LuaTgX provides, or we can go
real low level using native Lua code, as in:

How about performance 59

do
local function nextbyte(f)
return f:read(1)
end

function io.bytes(f)
return nextbyte, f
end
end

f = io.open("somefile.dat")

for b in io.bytes(f) do
do_something(b)

end

f:close()

Of course in practice one will need to integrate this into one of the reader callback, but
the principle stays the same. In case you wonder if calling functions for each byte is fast
enough . .. it's more than fast enough for normal purposes, especially if we keep in mind
that other tasks like reading of, preparing of and dealing with fonts of processing token
lists take way more time. You can be sore that when half a second runtime is spent on
reading a file, processing may take minutes. If one wants to sqeeze more performance
out of this part, it's always an option to write special libraries for that, but this is beyond
standard LuaTgX. We found out that the speed of loading data from files in Lua is mostly
related to the small size of Lua's file buffer. Reading data stored in tables is extremely fast,
and even faster when precompiled into bytecode.

tables

When Taco and | were experimenting with the callbacks that intercept tokens and nodes,
we wondered what the impact would be on performance. Although in MkIV we allocate
quite some memory due to font handling, we were pretty sure that handling TgX's internal
lists also could have theirimpact. Data related to fonts is not always subjected to garbage
collection, simply because it's to be available permanently. List processing on the other
hand involves a lot of temporary allocated tables. During a run a real huge amount of to-
kens passes the machinery. When digested, they become nodes. Fortesting we normally
use this document (with the name mk . tex) and at the time of writing this, it has some 48

pages.

This document is of moderately complexity, but not as complex as the documents that
I normally process; they have with lots of graphics, layers, structural elements, maybe a
bit of xml parsing, etc. Nevertheless, we're talking of some 24 million tokens entering the

60 How about performance

engine for 50 pages of text. Contrary to this the number of nodes is small: only 120 thou-
sand but the tables making up the nodes are more complex than token tables (with three
numbers per token). When all tokens are intercepted and returned unchanged, on my
machine the run is progressively slow and memory usage grows from 75M to 112M. There
is room for improvement there, especially in the garbage collector.

Side note: quite some of these tokens result from macro expansion. Also, when in the
input a \command is used, the callback passes it as one token. A command stores in
a format is already tokenized, but a command read from the input is tokenized when
read, so behind each token reported there can be a few more input characters, but their
number can be neglected compared to tokens originating from the macro package.

The token callback is rather slow when used for a whole document. However, this is
typically a callback that will only be used in very special situations and for a controlled
number of tokens. The node callback on the other hand can be set permanently. Fortu-
nately the number of nodes is relatively small. The overhead of a simple token handler
that just counts nodes is around 5% but most common manipulations with token lists
don't take much more time. For instance, experiments with adding kerns around punc-
tuation (a French speciality) hardly takes time, resolving ligatures is not really noticeable
and applying inter—character spacing to a whole document is not that slow either. Ac-
tually, the last example is kind of special because it more than doubles the size of the
node lists. Inserting or removing table elements in relatively slow when tables are large
but there are some ways around this.

One of the reasons of whole-document token handling being slow is that each token is a
three—element table and so the garbage collector has to work rather hard. The efficiency
of this process is also platform dependent (or maybe compiler specific). Manipulating
the garbage collector parameters does not improve performance, unless this forces the
collector to be inefficient at the cost of a lot of memory.

However, when we started dealing with nodes, | gave tuning the collector another try
and on the mentioned test document the following observations were made when ma-
nipulating the step multiplier:

step runtime memory

200 24.0 80.5M
175 21.0 78.2M
150 22.0 74.6M
160 22.0 74.6M
165 21.0 77.6M
125 21.5 89.2M
100 21.5 88.4M

As aresult, | decided to set the stepmul variable to 165.

How about performance 61

\ctxlua{collectgarbage("setstepmul", 165)}

However, when we were testing thenew 1peg based MetaPost converter, we ran into
problems. Fortable intensive operations, temporary disabling the garbage collector gave
a significant boost in speed. While testing performance we used the following loop:

\dorecurse {2000} {
\setbox \scratchbox \hbox \bgroup
\convertMPtoPDF{test-mps-procset.mps}{1}{1}
\egroup
+

In such a loop, turning the garbage collector on and off is disasterous. Because no other
Lua calls happen between these calls, the garbage collector is never invoked at all. As
a result, memory growed from the baseline of 45M to 120MB and processing became
incrementally slow. | found out that restarting the collector before each conversion kept
memory usage low and the speed also remained okay.

\ctxlua{collectgarbage("restart")}

Further experiments learned that it makes sense to restart the collector at each shipout
and before table intense operations. On mk. tex this results in a memory usage of 74M
(at the end of the run) and a runtime of 21 seconds.

Concerning nodes and speed/allocation issues, we need to be aware of the fact that this
was still somewhat experimental and in the final version of LuaTgX callbacks may occur
at different places and lists may be subjected to parsing multiple times at different mo-
ments and locations (for instance when we start dealing with attributes, an upcoming new
feature).

Back to tokens. The reason why applying the callback to every token takes a while has
to do with the fact that each token goes through the associated function. If you want to
have an idea of what this means for 24 million tokens, just run the following Lua code:

for i=1,24 do
print (i)
for j=1,1000%1000 do
local t = {1, 2, 3}
end
end
print (os.clock())

This takes some 60 seconds on my machine. The following code runs about three times
faster because the table has not to be allocated each time.

62 How about performance

t=9{1, 2, 3}

for i=1,24 do
print (i)
for j=1,1000%1000 do

t[1]1=4 t[2]=5 t[3]=6

end

end

print(os.clock())

Imagine this code to be interwoven with other code and TgX doing things with the tokens
itgets back. The memory pool will be scattered and garbage collectingwill become more

difficult.

However, in practice one will only apply token handling to a marked piece of the input
data. Itis for this reason that the callback is not:

callback.register('token_filter', function(t)
return t
end)

but instead

callback.register('token_filter', function()
return token.get_next ()
end)

This gives the opportunity to fetch more than one token and keep fetching till a criterium
is met (for instance a sentinel).

Because token.get_next is not bound to the callback you can fetch tokens anytime
you want and only use the callback to feed back tokens into TgX. In ConTgXt MkIV there
is some collect and flush tokens present. Here is a trivial example:

\def\SwapChars{\directlua 0 {

do
local t = { token.get_next(), token.get_next() }
callback.register('token_filter', function()
callback.register('token_filter', nil)
return { t[2], t[1] }
end)
end

T}

\SwapChars HH \SwapChars TH

How about performance 63

Collecting tokens can take place inside the callback but also outside. This also gives you
the opportunity to collect them in efficient ways and keep an eye on the memory de-
mands.

Of course using TeX directly takes less code:
\def\SwapChars#1#2{#2#1}

The example shown here involves so little tokens that running it takes no noticeable time
Here we show this definition in tokenized form:

cmd chr id name
def 0 706 def
undefined_cs 0 636553 SwapChars
mac_param 35

other_char 49 1

mac_param 35

other_char 50 2

left_brace 123

mac_param 35

other_char 50 2

mac_param 35

other_char 49 1

right_brace 125

64 How about performance

IX Nodes and attributes

introduction

Here we will tell a bit about the development of node access in LuaTgX. We will also in-
troduce attributes, a feature closely related to nodes. We assume that you are somewhat
familiar with TgX's nodes: glyphs, kerns, glue, penalties, whatsits and friends.

tables

Access to node lists has been implemented rather early in the development because we
needed it to fulfil the objectives of the Oriental TEX project. The first implementation
used nested tables, indexed by number. In that approach, the first entry in each node
indicated the type in string format. At that time a horizontal list looked as follows:

list = {
[1] = "hlist",
[2] = O,
[8] = A
[1] = {
[1] = "glyph”,
s
[2] = A
+
+

Processing such lists is rather convenient since we can use the normal table iterators.
Because in practice only a few entries of a node are accessed, working with numbers
is no real problem: in slot1we have the type, en in the case of a horizontal or vertical list,
we know that slot 8 is either empty or a table. Looping over the list is done with:

for i, node in ipairs(list) do
if node[1] == "glyph" then
1list[i] [6] = string.byte(string.upper(string.char(node[5])))
end
end

Node processing code hooks into the box packagers and paragraph builder and a few
more places. This means that when using the table approach a lot of callbacks take place

Nodes and attributes 65

where TgX has to convert to and from Lua. Apart from processing time, we also have to
deal with garbage collection then and on an older machine with insufficient memory
interesting bottlenecks show up. Therefore some following optimizations were imple-
mented at the TgX end of the game.

Side note concerning speed: when memory of processing speed is low, runtime can in-
crease five to tenfold compared to pdfTgX when one does intensive node manipulations.
This is due to garbage collection at the Lua end and memory (de)allocation at the TgX end.
There is not much we can do about that. Interfacing has a price and hardware is more
powerful than when TgX was written. Processing the TgX book using no callbacks is not
that much slower than using a traditional TgX engine. However, nowadays fonts are more
extensive, demands for special features more pressing and that comes at a price.

When the listis not changed, the callback function can return the value true. This signals
TEX that it can keep the original list. When the list is empty, the callback function can
return the value false. This signals TeX that the list can be discarded.

In orderto minimize conversions and redundant processing, nested lists were not passed
as table but as a reference. One could expand such a list when needed. For instance,
when one hooks the same function in the hpack_filter and pre_linebreak fil-
ter callbacks, this way one can be pretty sure that each node is only processed once.
Boxed material that is part of the paragraph stream first enters the box packers and then
already is processed before it enters the paragraph callback. Of course one can decide
the expand the referred sublist and process it again. Keep in mind that we're still talking
of a table approach, but we're slowly moving away from big conversions.

In principle one caninsertand delete nodes in such a list but given that the average length
of a list representing a page is around 4000, you can imagine that moving around a large
amount of data is not that efficient. In order to cope with this, we experimented a lot and
came to solutions which will be discussed later on.

At the Lua end some tricks were used to avoid the mentioned insertion and deletion
penalty. When a node was deleted, we simply set its value to false. Deleting all glyphs
then became:

for i, node in ipairs(list) do
if node[1] == "glyph" then
list[i] = false
end
end

When TgX converted a Lua table back into its internal representation, itignored such false
nodes.

66 Nodes and attributes

For insertion a dummy node was introduced at the Lua end. The next code duplicates
the glyphs.

for i, node in ipairs(list) do
if node[1] == "glyph" then
list[i] = { 'inline', 0, nil, { node, node } }
end
end

Just before we passed the resulting list back to TEX we collapsed these inline pseudo
nodes. This was a rather fast operation.

So far so good. But then we introduced attributes and keeping track of them as well as
processing them takes quite some processing power. Nodes with attributes then looked
like:

someglyph = {

[1] = "glyph", ~~ type

[2] = 0, -- subtype
[3] = { [1] =5, [4] = 10 }, -- attributes
[4] = 88, -- slot

[6] = 32 -- font

b

Constructing attribute tables for each node is costly in terms of memory usage and pro-
cessing time and we found out that the garbage collector was becoming a bottleneck,
especially when resources are thin. We will go into more detail about attributes else-
where.

lists

At the same time that we discussed these issues, new Dutch word lists (adapted spelling)
were published and we started wondering if we could use such lists directly for hyphen-
ation purposes instead of relying on traditional patterns. Here the first observation was
that handling these really huge lists is no problem at all. Okay, it costs some memory but
we only need to load one of maybe a few of these lists. Hyphenating a paragraph us-
ing tables with hyphenated words and processing the paragraph related node list is not
only fast, it also gives us the opportunity to cross font boundaries. Of course there are
kerns and ligatures to deal with but this is no big deal. At least it can be an alternative or
addendum to the current hyphenator. Some languages have very small pattern files or a
very systematic approach to hyphenation so there is no reason to abandon the traditional
ways in all cases. Take your choice.

Nodes and attributes 67

When experimenting with the new implementation we tested the performance by letting
Luatake care of hyphenation, spell checking (marking words) and adding inter—character
kerns. When playing with big lists of words we found out that the caching mechanism
could notbe used due to some limitations in the Lua byte code interpreter, so eventually
we ended up with a dedicated loader.

However, again we ran into performance problems when lists became more complex.
And so, instead of converting TeX datastructures into Lua tables userdata types came into
view. Taco already had reimplemented the node memory management, so a logical next
step was to reimplement the callbacks and box related code to deal with nodes as linked
lists. Since this is now the fashion in LuaTgX, you may forget the previous examples, al-
though it is not that hard to introduce table representations again once we need them.

Of course this resulted in an adaption to the regular TgX code but a nice side effect was
that we could now use fields instead of indexes into the node data structure. There is
a small price to pay in terms of performance, but this can be compensated by clever
programming.

someglyph = {
type = 41,
subtype = 0,
attributes = <attributes>,
char = 88,
font = 32
+

Attributes themselves are userdata. The same is true for components that are present
when we're for instance dealing with ligatures.

As you can see, in the field variant, a type is a number. In practice, because Lua hashes
strings, working with strings is as fast when comparing, but since we now have the more
abstract type indicator, we stick with the numbers, which saves a few conversions. When
dealing with tables we get code like:

function loop_over_nodes(list)
for i, n in ipairs(list)
local kind = n[1]
if kind == "hlist" or kind == "vlist" then

end
end
end

But now that we have linked lists, we get the following. Node related methods are avail-
able in the node namespace.

68 Nodes and attributes

function loop_over_nodes(head)
local hlist, vlist = node.id('hlist'), node.id('vlist')
while head do
local kind = head.type
if kind == hlist or kind == vlist then

end
head = head.next
end
end

Using an abstraction (i.e. a constant representing h1ist looks nice here, which is why
numbers instead of strings are used. The indexed variant is still supported and there we

have strings.

Going from a node list (head node) to a table is not that complex. Sometimes this can be
handy because manipulating tables is more convenient that messing around with user-

data when it comes down to debugging or tracing.

function nodes.totable(n)
function totable(n)
local f, tt = node.fields(n.id,n.subtype), { }
for _,v in ipairs(f) do
local nv = nl[v]
if nv then

local tnv = type(nv)
if tnv == "string" or tnv == "number" then
ttlv] = nv
else -- userdata
tt[v] = nodes.totable(nv)
end
end
end
return tt

end

local t = { }

while n do
t[#t+1] = totable(n)
n = n.next

end

return t

end

Nodes and attributes

69

It will be clear that here we collect data in Lua while treating nodes as userdata keeps
most of it at the TgX side and this is where the gain in speed comes from.

side effects

While experimenting with node lists Taco and | ran into a peculiar side effect. One of the
tests involved adding kerns between glyphs (inter character spacing as sometimes uses
in titles in a large print). When applied to a whole document we noticed that at some
places (words) the added kerning was gone. We used the subtype zero kern (which is
most efficient) and in the process of hyphenating TgX removes these kerns and inserts
them later (but then based on the information stored in the font.

The reason why TeX removes the font related kerns, is the following. Consider the code:
\setboxO=\hbox{some text} the text \unhcopyO has width \the\wdO

While constructing the \hbox, TeX will apply kerning as dictated by the font. Otherwise
the width of the box would not be correct. This means that the node list entering the
linebreak machinery contains such kerns. Because hyphenating works on words TgX will
remove these kerns in the process of identifying the words. It creates a string, removes
the original sequence of nodes, determines hyphenation points, and add the result to
the node list. For efficiency reasons TeX will only look at places where hyphenation makes
sense.

Now, imagine that we add those kerns in the callback. This time, all characters are sur-
rounded by kerns (which we gave subtype zero). When TgX is determining feasable break-
points (hyphenation), it will remove those kerns, but only at certain places. Because our
kerns are way larger than the normal interglyph kerns, we suddenly end up with an in-
tercharacter spaced paragraph that has some words without such spacing but the font
dictated kerns.

most words are spaced but somewords are not

Of course a solution is to use a different kern, but at least this shows that the moment of
processing nodes as well as the kind of manipulations need to be chosen with care.

Kerning is a nasty business anyway. Imagine the following word:

effe

When typeset this turns into three characters, one of them being a ligature.
[char e] [liga ff (components f f)] [char el

However, in Dutch, such a word hyphenates as:

70 Nodes and attributes

ef-fe
This means that in the node list we eventually find something:

[char e] [disc (f-) (f) (skip 1)] [liga ff (components f f)] [char
el

So, eventually we need to kern between the character sequences [e,f-], [e,ff], [ff,e] and
[f.e].

attributes

We now arrive at attributes, a new property of nodes. Before we explain a bit more what
can be done with them, we show how to define a new attribute and toggle it. In the
following example the \visualizenextnodes macro is part of ConTgXt MKIV.

\newattribute\aa
\newattribute\ab
\visualizenextnodes \hbox {\aal T{\ab3\aa2 E}X}

For the sake of this example, we start the allocation at 200 because we don't want to
interfere with attributes already defined in ConTgXt. The node list resulting from the box
is shown at the next page. As you can see here, internally attributes become a linked list
assigned to the attr field. This means that one has to do some work in order to inspect
attributes.

function has_attribute(n,a)
if n and n.attr then
n = n.attr.next
while n do
if n.number == a then
return n.value
end
n = n.next
end
else
return false
end
end

The previous function can be used in tests like:

local total = O
while n do

Nodes and attributes 71

t={
attr={
id=48,
next={
id=46,
next={
id=46,
number=137,
value=3,
next={
id=46,
number=138,
value=1,
},
1,
},
1,
width=1742797,
depth=3670,
height=346817,
dir="TLT",
list={
id=37,
subtype=256,
attr={
id=48,
next={
id=46,
next={
id=46,
number=137,
value=3,
next={
id=46,
number=138,
value=1,
1,
},
1,
},
char=229,
font=103,
lang=2,
left=2,
right=3,
uchyph=1,
next={
id=37,
subtype=256,
attr={
id=48,
next={
id=46,
next={
id=46,

number=137,

value=3,
next={
id=46,

number=138,
value=1,
},
},
},
},
char=49,
font=103,
lang=2,
left=2,
right=3,
uchyph=1,
next={
id=10,
attr={
id=48,
next={
id=46,
next={
id=46,
number=137,
value=3,
next={
id=46,
number=138,
value=1,

1},

spec={
id=47,
width=100925,
stretch=50463,
shrink=33642,
},
next={
id=37,
subtype=256,
attr={
id=48,
next={
id=46,
next={
id=46,
number=137,
value=3,
next={
id=46,
number=138,
value=1,

},
char=84,
font=103,
lang=2,
left=2,

Figure IX.1 \hbox

72 Nodes and attributes

right=3,
uchyph=1,
next={
id=11,
attr={
id=48,
next={
id=46,
next={
id=46,
number=137,
value=3,
next={
id=46,
number=138,
value=1,

1,
kern=-44040,
next={
id=37,
subtype=256,
attr={
id=48,
next={
id=46,
next={
id=46,
number=137,
value=3,
next={
id=46,

number=138,

value=1,
next={
id=46,

number=257,

value=3,

},
char=229,
font=103,
lang=2,
left=2,
right=3,
uchyph=1,
next={
id=37,
subtype=256,
attr={
id=48,
next={
id=46,
next={

{\aa 1 T{\ab

id=46,
number=137,
value=3,
next={
id=46,
number=138,
value=1,
next={
id=46,
number=257,
value=3,
},
1,
},
1,
},
char=50,
font=103,
lang=2,
left=2,
right=3,
uchyph=1,
next={
id=10,
attr={
id=48,
next={
id=46,
next={
id=46,
number=137,
value=3,
next={
id=46,
number=138,
value=1,
next={
id=46,
number=257,
value=3,

},

spec={
id=47,
width=100925,
stretch=50463,
shrink=33642,

},

next={
id=37,
subtype=256,
attr={

id=48,

next={ 3,

id=46, }
next={

3\aa 2 E}X}

id=46,
number=137,
value=3,
next={
id=46,
number=138,
value=1,
next={
id=46,
number=257,
value=3,
},
},
},
3,
},
char=69,
font=103,
lang=2,
left=2,
right=3,
uchyph=1,
next={
id=37,
subtype=256,
attr={
id=48,
next={
id=46,
next={
id=46,
number=137,
value=3,
next={
id=46,
number=138,
value=1,
},
},
},
3,
char=88,
font=103,
lang=2,
left=2,
right=3,
uchyph=1,

if has_attribute(n,200) then
total = total + 1
end
n = n.next
end
texio.write_nl(string.format (
"attribute 200 has been seen 7 times", total

))

When implementing nodes and attributes we did rather extensive tests and one of the
test documents implemented some preliminary color mechanism based on attributes.
When handling the colors the previous function was called some 300.000 times and the
total node processing time (which also involved font handling) was some 2.9 seconds.
Implementing this function as a helper brought down node processing time to 2.4 sec-
onds. Of course the gain depends on the complexity of the list (nesting) and the number
of attributes that are set (upto 5 per node in this test). A few more helper functions are
available, some are for convenience, some gain us some speed.

The nice thing about attributes is that they obey grouping. This means that in the follow-
ing sequence:

x {\aal x \ab2 x} x
the attributes are assigned like:
x x(201=1) x(201=1,202=2) x

Internally LuaTX does some optimizations with respect to assigning a sequence of similar
attributes, but you should keep in mind that in practice the memory usage will be larger
when using many attributes.

We played with color and other properties, hyphenation based on word lists (and track-
ing languages with attributes) and or special algorithms (url hyphenation), spell checking
(marking words as being spelled wrongly), and a few more things. This involved handling
attributes in several callbacks resulting in the insertion or deletion of nodes.

When using attributes for color support, we have to insert pdf1iteral whatsit nodes
at some point depending on the current color. This also means that the time spent with
color support at the TgX end will be compensated by time spent at the Lua side. It also
means that because housekeeping to do with colors spanning pages and columns is gone
because from now on color information travels with the nodes. This saves quite some
ugly code.

Because most of the things that we want to do with attributes (and we have quite an
agenda) are already nicely isolated in ConTgXt, attributes will find their way rather soon
in ConTpXt MKIV.

Nodes and attributes 73

Let's end with an observation. Attributes themselves are not something revolutionary.
However, if you had to deal with them in TEX, i.e. associate them with for instance actions
in during shipout, quite some time would have been spent on getting things right. Even
worse: it would have lead to never ending discussions in the TEX community and as such
it's no surprise that something like this never showed up. The fact that we can use Lua
and manipulate node lists in many ways frees us from much discussion.

We are even considering in future versions of LuaTgX to turn font, language and direction
related information into attributes (in some private range) so this story is far from finished.
As a teaser, consider the following line of thinking.

Currently when a character enters the machinery, itbecomes a glyph node. Among other
characteristics, this node contains information about the font and the slot in that font
which is used to represent that character. In a similar fashion, a space becomes glue with
a measure probably related to the current font.

However, with access to nodes and attributes, you can imagine the following scenario.
Instead of a font (internally represented by a font id), you use an attribute referring to a
font. At that time, the font field us just pointing to TeX's null font. In a pass over the node
list, you resolve the character and their attributes to a fonts and (maybe) other characters.
Spacing can be postponed as well and instead of real glue values we can use multipliers
and again attributes point the way to resolve them.

Of course the question is if this is worth the trouble. After all typesetting is about fonts
and there is no real reason not to give them a special place.

74 Nodes and attributes

X Dirty tricks

If you ever laid your hands on the TgXbook, the words “dirty tricks” will forever be associ-
ated with an appendix of that book. There is no doubt that you need to know a bit of the
internals of TgX in order to master this kind of trickyness.

In this chaper | will show a few dirty LuaTgX tricks. It also gives an impression of what kind
of discussions Taco and | had when discussing what kind of support should be build in
the interface.

afterlua
When we look at Lua from the TgX end, we can do things like:

\def\test#1{%
\setbox0=\hbox{\directluaO{tex.sprint (math.pix*#1)1}}/
pi: \the\wdO\space\the\htO\space\the\dpO\par

}

But what if we are at the Lua end and want to let TgX handle things? Imagine the following
call:

\setboxO\hbox{} \dimenO=Opt \ctxlua {
tex.sprint ("\string\\setbox0=\string\\hbox{123}")
tex.sprint ("\string\\the\string\\wd0")

+

This gives: 16.31999pt. This may give you the impression that TgX kicks in immediately,
but the following example demonstrates otherwise:

\setbox0O\hbox{} \dimenO=0Opt \ctxlua {
tex.sprint ("\string\\setbox0=\string\\hbox{123}")
tex.dimen[0] = tex.wd[O]
tex.sprint ("\string\\the\string\\dimen0")

}

This gives: o.opt. When still in Lua, we never get to see the width of the box.
A way out of this is the following rather straightforward approach:

function test(n)
function follow_up()
tex.sprint(tex.wd[0])

Dirty tricks 75

end
tex.sprint ("\\setbox0=\\hbox{123}\\directlua 0 {follow_up()}")
end

We can provide a more convenient solution for this:

after lua = { } —-- could also be done with closures

function the_afterlua(...)
for _, fun in ipairs(after_lua) do
fun(...)
end
after lua = { }
end

function afterlua(f)
after_ lua[#after_ lua+l] = f
end

function theafterlua(...)
tex.sprint ("\\directlua O {the_afterlua("
. table.concat({...},',') .. MM
end

If you look closely, you will see that we can (optionally) pass arguments to the function
theafterlua. Usage now becomes:

function test(n)
afterlua(function(...)
tex.sprint(string.format("pi: %s %s %s\\par",...))
end)
afterlua(function(wd,ht,dp)
tex.sprint(string.format("ip: %s %s %s\\par",dp,ht,wd))
end)
tex.sprint(string.format ("\\setbox0=\\hbox{/s}" ,math.pi*n))
theafterlua(tex.wd[0],tex.ht[0],tex.dp[0])
end

The last call may confuse you but since it does a print to TgX; it is in fact a delayed action.
A cleaner implementation is the following:

do

delayed = { } -- could also be done with closures

76 Dirty tricks

function lua.delay(f)
delayed[#delayed+1] = £
end

function lua.flush_delayed(...)
local t = delayed
delayed = { }
for _, fun in ipairs(t) do
fun(...)
end
end

function lua.flush(...)
tex.sprint ("\\directlua 0 {lua.flush_delayed("
table.concat({...},',') .. "™)}")
end

end
Usage is similar:

function test(n)
lua.delay(function(...)
tex.sprint(string.format("pi: %s %s %s\\par",...))
end)
tex.sprint(string.format ("\\setbox0=\\hbox{/s}" ,math.pi*n))
lua.flush(tex.wd[0],tex.ht[0],tex.dp[0])
end

Dirty tricks

77

78 Dirty tricks

Xl Going beta

introduction

We're closing in on the day that we will go beta with LuaTgX (end of July 2007). By now we
have a rather good picture of its potential and to what extend LuaTgX will solve some of
our persistent problems. Let's first summarize our reasons for and objectives with LuaTgX.

e The world has moved from 8 bits to 32 bits and more, and this is quite noticeable in
the arena of fonts. Although Type1 fonts could host more than 256 glyphs, the associ-
ated technology was limited to 256. The advent of OpenType fonts will make it easier
to support multiple languages at the same time without the need to switch fonts at
awkward times.

e Atthe same time Unicode is replacing 8 bit based encoding vectors and code pages
(input regimes). The most popular and rather efficient utf8 encoding has become a
de factor standard in document encoding and interchange.

e Although we can do real neat tricks with TgX, given some nasty programming, we are
touching the limits of its possibilities. In order for it to survive we need to extend the
engine but not at the cost of base compatibility.

e Codingsolutions in a macro language is fine, but sometimes you long to a more pro-
cedural approach. Manipulating text, handling io, interfacing ... the technology
moves on and we need to move along too.

Hence LuaTgX: a merge of the mainstream traditional TeX engines, stripped from broken
or incomplete features and opened up to an embedded Lua scripting engine.

We will describe the impact of this new engine by starting from its core components re-
flected in the specific Lua interface libraries. Missing here isembedded supportfor Meta-
Post, because it's not yet there (apart from the fact that we use Lua to convert MetaPost
graphics into TgX). Also missing is the interfacing to the pdf backend, which is also on the
agenda for later. Special extensions, for instance those dealing with runtime statistics are
also not discussed. Since we use ConTpXt as testbed, we will refer to the LuaTgX aware
version of this macro package, MkIV, but most conclusions are rather generic.

tex internals

In orderto manipulate TeX's data structures, we need access to all those registers. Already
early in the development, dimension and counters were accessible and when token and
node interfaces were implemented, those registers also were interfaced.

Goingbeta 79

Those who read the previous chapters will have noticed that we hardly discussed this
option. The reason is that we didn't yet needed that access much in order to implement
font support and list processing. After all, most of the data that we need to access and
manipulate is not in the registers at all. Information meant for Lua can be stored in Lua
data structures. In fact, the basic call

\directlua O {some lua code}

has shown to be a pretty good starting point and the fact that one can print back to the
TEX engine overcomes the need to store results in shared variables.

\def\valueofpi{\directluaO{tex.sprint (math.pi()}}

The number of such direct calls is not that large anyway. More often a call to Lua will be
initiated by a callback, i.e. a hook into the TgX machinery.

What will be the impact of access on ConTgXt MkIV? This is yet hard to tell. In a later stage
of the development, when parts of the TEX machinery will be rewritten in order to get rid
of the current global nature of many variables, we will gain more control and access to
TeX's internals. Core functionality will be isolated, can be extended and/or overloaded
and at that moment access to internals is much more needed. But certainly that will be
beyond the current registers and variables.

callbacks

These are the spine of LuaTgX: here both worlds communicate with each other. A callback
is a place in the TgX kernel where some information is passed to Lua and some result is
returned that is then used along the road. The reference manual mentions them all and
we will not repeat them here. Interesting is that in MkIV most of them are used and for
tasks that are rather natural to their place and function.

callback.register("tex_wants_to_do_this",
function but _use lua_to _do_it_instead(a,b,c)
-— do whatever you like with a, b and c
return a, b, c
end

)

The impact of callbacks on MkIV is big. It provides us a way to solve persistent problems
or reimplement existing solutions in more convenient ways. Because we tested realistic
functionality on real (moderately complex) documents using a pretty large macro pack-
age, we can safely conclude that callbacks are quite efficient. Stepwise Lua kicks in in
order to:

8o Goingbeta

influence the input medium so that it provides a sequence of utf characters
manipulate the stream of characters that will be turned into a list of tokens
convert the list of tokens into another list of tokens

enhance the list of nodes that will be turned into a typeset paragraph
tweak the mechanisms that come into play when lines are constructed
finalize the result that will end up in the output medium

Interesting is that manipulating tokens is less useful than it may look at first sight. This has
to do with the fact that it's (mostly) an expanded stream and at that time we've lost some
information or need to do quite some coding in order to analyze the information and act
upon it.

Will ConTgXt users see any of this? Chances are small that they will, although we will
provide hooks so that they can add special code themselves. Users activating a callback
has some danger, since it may overload already existing functionality. Chaining function-
ality in a callback also has drawbacks, if only that one may be confronted with already
processed results and/or may destroy this result in unpredictable ways. So, as with most
low level TgX features, ConTgXt users will work with more abstract interfaces.

in- and output

In MkIV we will no longer use the kpse library directly. Instead we use a reimplementa-
tionin Luathatnot only is more efficient, butalso more powerful: it can read fromzipfiles,
use protocols, be more clever in searching, reencodes the input streams when needed,
etc. The impact on MkIV is large. Most TEX code that deals with input reencoding has
gone away and is replaced by Lua code.

Although it is not directly related with reading from the input medium, in that stage we
also replaced verbatim handling code. Such (often messy) catcode related situations are
now handled more flexible, thanks to fast catcode table switching (a new LuaTgX feature)
and features like syntax highlighting can be made more neat.

Buffers, a quite old but frequently used feature of ConTgXt, are now kept in memory in-
stead of files. This speeds up runs. Auxiliary data, aka multi-pass information, will no
longer be stored in TgX files but in Lua files. In ConTgXt we have one such auxiliary file
and in MKkl this file is selectively filtered, butin MkIV we will be less careful with memory
and load all that data once. Such speed improvements compensate the fact that LuaTgX
is somewhat slower than it's ancestor pdfTgX. (Actually, the fact that LuaTgX is a bit slower
that pdfTEX is mostly due to the fact that it has Aleph code on board.)

Users often wonder why there are so many temporary files, but these mostly relate to
MetaPost support. These will go away once we have MetaPost as a library.

Goingbeta 81

In a similar way support for xml will be enriched. We already have experimental loaders,
filters and other code, and integration is on the agenda. Since ConTgXt uses xml for some
sub systems, this may have some impact.

Other io related improvements involve debugging, error handling and logging. We can
pop up helpers and debug screens (MkIV can produce xhtml output and then launch a
browser). Users can choose more verbose logging of io and ask for log data to be for-
matted in xml. These parts need some additional work, because in the end we will also
reimplement and extend TgX's error handling.

Another consequence of this will be that we will be able to package TEX more conve-
niently. We can put all the files that are needed into a zip file so that we only need to ship
that zip file and a binary.

font readers

Handling OpenType involves more that just loading yet another font format. Of course
loading an OpenType file is a necessity but we need to do more. Such fonts come with
features. Features can involve replacing one representation of a character by another one
of combining sequences into other sequences and finaly resolving them to one or more

glyphs.

Giventhe numerous options we will have to spend quite some time on extending ConTgXt
with new features. Instead of defining more and more font instances (the traditional TgX
way of doing things) we will will provides feature switching. In the end this will make the
often confusing font mechanisms less complex for the user to understand. Instead of for
instance loading an extra font (set) that provides old style numerals, we will decouple this
completely from fonts and provide it as yet another property of a piece of text. The good
news is that much of the mostimportant machinery is alresady in place (ligature building
and such). Here we also have to decide what we let TgX do and what we do by process-
ing node lists. For instance kerning and ligature building can either be done by TgX or by
Lua. Given the fact that TEX does some juggling with character kerning while determining
hyphenation points, we can as well disable TgX's kerning and let Lua handle it. Thereby
TeX only has to deal with paragraph building. (After all, we need to leave TEX some core
functionality to deal with.)

Another everlasting burden on macro writers and users is dealing with character repre-
sentations missing from a font. Of course, since we use named glyphs in ConTgXt MklI
already much of this can be hidden, butin MkIV we can create virtual fonts on the fly and
keep thinking in terms of characters and glyphs instead of dealing with boxes and other
structures that don't go well with for instance hyphenating words.

This brings us to hyphenation, historically bound to fonts in traditional TgX. This depen-
dency will go away. In Mkll we already ship utf8 based patterns fore some time and

82 Goingbeta

these can be conveniently used in MkIV too. We experimented with using hyphenated
word lists and this looks promising. You may expect more advanced ways of dealing with
words, hyphenation and paragraph building in the near future. When we presented the
first version of LuaTgX a few years ago, we only had the basic \directlua call available
and could do a bit of string manipulation on the input. Afancy demo was to color wrongly
spelled words. Now we can do that more robustly on the node lists.

Loading and preparingfonts for usage in LuaTgX or actually MkIV because this depends on
the macro package takes some runtime. For this reason we introduces caching into MkIV:
data that is used frequently is written to a cache and converted to Lua bytecode. Loading
the converted files is incredibly fast. Of course there is aprice to pay: disk space, but that
comes cheap these days. Also, it may as well be compensated by the fact that we can
kick out many redundant files from the core TgX distributions (metric files for instance).

tokens handlers

Do we need to handle tokens? So far in experimental MkIV code we only used these
hooks to demonstrate what TgX does with your characters. For a while we also con-
structed token lists when we wanted to inject \pdf1literal code in node lists, but that
became obsolete when automatic string to token conversion was introduced in the node
conversion code. Now we inject literal whatsit nodes. It may be worth noticing that play-
ing with token lists gave us some good insight in bottlenecks because quite some small
table allocation and garbage collections goes on.

nodes and attributes

These are the most promissing new features. In itself, nodes are not new, nor are attrib-
utes. In some sense when we use primitives like \hbox, \vskip, \lastpenalty the
result is a node, but we can only control and inspect their properties within hard coded
bounds. We cannot really look into boxes, and the last penalty may be obscured by a
whatsit (a mark, a special, a write, etc.). Attributes could be fakes with marks and macro
bases stacks of states. Native attributes are more powerful and each node can cary a
truckload of them.

With LuaTgX, out of a sudden we can look into TgX's internals and manipulate them. Al-
though | don't claim to be a real expert on these internals, even after over a decade of TgX
programming, I'm sometimes surprised what | found there. When we are playing with
these interfaces, we often run into situations where we need to add much print state-
ments to the Lua code in order to find out what TgX is returning. It all has to do with the
way TgX collects information and when it decides to act. In regular TEX much goes unno-
ticed, but when one has for instance a callback that deals with page building there are
many places where this gets called and some of these places need special treatment.

Goingbeta 83

Undoubtely this will have a huge impact on ConTgXt MkIV. Instead of parsing an input
stream, we can now manipulate node lists in order to achieve (slight) inter-character
spacing which is often needed in sectioning titles. The nice thing about this new ap-
proach is that we no longer have interference from characters that need multiple tokens
(input characters) in order to be constructed, which complicates parsing (needed to split
glyphs in MklI).

Signaling where to letterspace is done with the mentioned attributes. There can be many
of them and they behave like fonts: they obey grouping, travel with the nodes and are
therefore insensitive for box and page splitting. They can be set at the TEX end but needs
to be handled at the Lua side. One may wonder what kind of macro packages would be
around when TgX has attributes right from its start.

In MKkII letterspacing is handled by parsing the input and injecting skips. Another ap-
proach would be to use a font where each character has more kerns or space around it (a
virtual font can do that). But that would not only demand knowledge of what fonts need
that that treatment, but also many more fonts and generating them is no fun for users. In
pdfTgX there is a letterspace feature, where virtual fonts are generated on the fly, and with
such an approach one has to compensate for the first and last characterin aline, in order
to get rid of the left- and rightmost added space (being part of the glyph). The solution
where nodes are manipulated does put that burden upon the user.

Another example of node processing is adding specific kerns around some punctuation
symbols, as is custom in French. You don't want to know what it takes to do that in tradi-
tional TgX, but if mention the fact that colons become active characters you can imagine
the nightmare. Hours of hacking and maybe even days of dealing with mechanisms that
make these active colons workable in places where colons are used for non text are now
even more wasted time if you consider that it takes a few lines of code in MkIV. Currently
we let ConTgXt support both good old TeX (represented by pdfTgX), X3IgX (a Unicode and
OpenType aware variant) and LuaTgX by shared and dedicated Mkll and MkIV code.

Vertical spacing can be a pain. Okay, currently Mkll has a rather sophisticated way to
deal with vertical spacing in ways that give documents a consistent look and feel, but
every now and then we run into border cases that cannot be dealt with simply because
we cannotlook backintime. Thisis needed because TgX adds content to the main vertical
list and then it's gone from our view. Take for instance section titles. We don't want them
dangling at the bottom of a page. But at the same time we want itemized lists to look
well, i.e. keep items together in some situations. Graphics that follow a section title pose
similar problems. Adding penalties helps but these may come too late, or even worse,
they may obscure previous skips which then cannot be dealt with by successive skips. To
simplify the problem: take a skip of 12pt, followed by a penalty, followed by another skip
of 24pt. In ConTgXt this has to become a penalty followed by one skip of 24pt.

84 Goingbeta

Dealing with this in the page builder is rather easy. Ok, due to the way TgX adds content
to the page stream, we need to collect, treat and flush, but currently this works all right.
In ConTpXt MkIV we will have skips with three additional properties: priority over other
skips, penalties, and a category (think of: ignore, force, replace, add).

When we experimented with this kind of things we quickly decided that additional ex-
periments with grid snapping also made sense. These mechanisms are among the more
complex ones on ConTgXt. A simple snap feature took a few lines of Lua code and hook-
ing it into MkIV was not that complex either. Eventually we will reimplement all vertical
spacing and grid snapping code of Mkll in Lua. Because one of ConTgXt column mech-
anism is grid aware, we may as well adath that and/or implement an additional mecha-
nism.

Aside effect of being able to do this in LuaTgX is that the code taken from pdfTgXis cleaned
up: all (recently added) static kerning code is removed (inter—character spacing, pre-and
post character kerning, experimental code that can fix the heights and depths of lines,
etc.). The core engine will only deal with dynamic features, like hz and protruding.

So, the impact on MkIV of nodes and attributes is pretty big! Horizontal spacing isues,
vertical spacing, grid snapping are just a few of the things we will reimplement. Other
things are line numbering, multiple content streams with synchronization, both are al-
ready present in Mkll but we can do a better job in MkIV.

generic code

Inthe previous text MkIV was mentioned often, butsome of the features are rather generic
in nature. So, how generic can interfaces be implemented? When the MklIV code has
matured, much of the Lua and glue-to—TgX code will be generic in nature. Eventually
ConTXt will become a top layer on what we internally call MetaTgX, a collection of kernel
modules that one can use to build specialized macro packages. To some extent MetaTgX
can be for LuaTgX what plain is for TeX. But if and how fast this will be reality depends on
the amount of time that we (and other members of the ConTgXt development team) can
allocate to this.

Goingbeta 85

86 Goingbeta

XIl Zapfing fonts

remark

The actual form of the tables shown here might have changed in the meantime. However,
since this document describes the stepwise development of LuaTgX and ConTgXt MkIV we don't
update the following information. The rendering might differ from earlier rendering simply
because the code used to process this chapter evolves.

features

In previous chapters we've seen support for OpenType features creep into LuaTgX and
ConTgXt MkIV. However, it may not have been clear that so far we were just feeding the
traditional TEX machinery with the right data: ligatures and kerns. Here we will show
what so called features can do for you. Not much Lua code will be shown, if only be-
cause relatively complex code is needed to handle this kind of trickery with acceptable
performance.

In order to support features in their full glory more is needed than TgX's ligature and kern
mechanisms: we need to manipulate the node list. As a result, we have now a second
mechanism built into MkIV and users can choose what method they like most. The first
method, called base, isless powerful and less complete than the one named node. Even-
tually ConTeXt will use the node method by default.

There are two variants of features: substitutions and positioning. Here we concentrate on
substitutions of which there are several. Positioning is for instance used for specialized
kerning as needed in for instance typesetting Arab.

One character representation can be replaced by one or more fixed alternatives or alter-
natives chosen from a list of alternatives (substitutions or alternates). Multiple characters
can be replaces by one character (substitutions, alternates or a ligature). The replace-
ments can depend on preceding and/or following glyphs in which case we say that the
replacementis driven by rules. Rules can deal with single glyphs, combinations of glyphs,
classes (defined in the font) of glyphs and/or ranges of glyphs.

Because the available documentation of OpenType is rather minimalistic and because
most fonts are relatively simple, you can imagine that figuring out how to implement sup-
port for fonts with advanced features is not entirely trivial and involves some trial and er-
ror. What also complicate things is that features can interfere. Yet another complicating
factor is thatin the order of applying a rule may obscure a later rule. Such fonts don't ship
with manuals and examples of correct output are not part of the buy.

Zapfing fonts 87

We like testing LuaTgX's open type support with Palatino Regular and Palatino Sans and
good old Type1 support with Optima Nova. So it makes sense to test advanced features
with Zapfino Pro. This font has many features, which happen to be implemented by
Adam Twardoch, a well known font expert and familiar with the TEX community. We had
the feeling that when LuaTgX can support Zapfino Pro, designed by Hermann Zapf and
enhanced by Adam, we have reached a crucial point in the development.

The first thing that you will observe when using this font is that the files are larger than
normal, especially the cached versions in MkIV. This made me extend some of the serial-
ization code that we use for caching font data so that it could handle huge tables better
but at the cost of some speed. Once we could handle the data conveniently and as a
side effect look into the font data with an editor, it became clear that implementing for
the calt and clig features would take a bit of coding.

example

Before some details will be discussed, we will show two of the test texts that ConTgXt users
normally use when testing layouts or new features, a quote from E.R. Tufte and one from
Hermann Zapf. The TeX code shows how features are set in ConTgXt.

\definefontfeature
[zapfino]
[language=nld,script=latn,mode=node,
calt=yes,clig=yes,liga=yes,rlig=yes,tlig=yes]
\definefont
[Zapfino]
[ZapfinoExtralLTPro*zapfino at 24pt]
[1ine=40pt]
\Zapfino
\input tufte \par

MNe Mé;w’/ n W/LWWM worldy /éo/au& j/;zm /;wmz/)e%a s oan é%ﬁZb‘?
cd wo?/ f(hfega‘/ eﬁ/ Y% oul, slructure, /%z/f; /ﬂ% /ﬂf/ mjo/ /4/-

MONLE, j/téé/g’}t@ teny, ?7%/@‘4&/ &{HM%ZJ&/ re)zw&/ MW@ cgﬂ%rey cateqoriee,

catalsy, sy bty abirct, soan, Loty Seali, ivlice, disriminet

88 Zapfing fonts

)zfﬁﬂw[rereen, piscentols, picl aver gort, integrte, Hond] iaect, filler
4%7@\ﬁé%hdmwﬂééféégéé:4W%37@7z%an%Z%df@ aégﬁyyég%f%%é@ mu%Zu;Jumr

marcey, wemcy, reviedy fé@/ﬂfo&/éf m/f%/ broarre, glance inta, @/ %y/
‘Né;@ C?ééz &m%m&@aiziﬂé;?i;yﬁz%yéﬁ% mbwumrl%éjwég%ijé%%/éég %é%%z;ﬂb
f%fﬁ%fé /%/f/ JM/Z¢ /46% Z@n@é;,

You don't even have to look too closely in order to notice that characters are represented
by different glyphs, depending on the context in which they appear.

\definefontsynonym
[Zapfino]
[ZapfinoExtralTPro]
[features=zapfino]
\definedfont
[Zapfino at 24pt]
\setupinterlinespace
[line=40pt]

\input zapf \par

@m% buck 1o féw&/Wow i e&fﬂma/u%jm/% W/ﬁéw
%jf/[/g/c:fj peceive their @@@ and %fmz&ﬁﬂﬂ baut e mé@/%
k//é%@/%%%;/é;mc%gﬂxﬁ?ﬁw??@QﬂQr0/éé;;@%ﬁwgiw%ﬁaUM%%?h%g%gzé%;gﬁfwd%{
5&%&@Q%Z;§:j74;§?k7@r; are. (ZZZ;@LS4ﬁ¢j¢ﬁu¢%Cé;a>Qgénazaﬁg @(ﬁfﬁ

new, af 6Z;é/mﬁdzh/bégazzé%%q/J%;;Z%¢lbﬁ;jgg%;amxy~Agzwe?f/ﬂ%%4;4> A;Z/
%/%w @/& /l/l@y /L@%Z W‘&jé@%wﬂfﬁ/ % %M PCY tricky, and

Zapfing fonts 89

M%ﬂ;d/ /M%% - ﬁ@f&%ﬁ///dm/ Cd%/% on fézjcra%/ w&% nake eﬂ?/b@

N

/deﬁmdﬁ%/fi/ NoQr o7,

obeying rules

When we were testing node based feature support, the only way to check this was to
identify the rules thatlead to certain glyphs. The more unique glyphs are good candidates
for this. For instance

e there is s special glyph representing %
e in the input stream this is the character sequence c/o
e so there most be a rule that tells us that this sequence becomes that ligature

As said, in this case, the replacement glyph is supposed to be a ligature and indeed there
issuch aligature: c_slash_o. Of course, this replacement will only take place when the
sequence is surrounded by spaces.

However, when testing this, we were notlooking at this rule but at the (randomly chosen)
rule that was meant to intercept the alternative h . 2 followed by z . 4. Interesting was that
this resolved to a ligature indeed, but the shape associated with this ligature was an h,
which is not right. Actually, a few more of such rules turned out to be wrong. It took a bit
of an effort to reach this conclusion because of the mentioned interferences of features
and rules. At that time, the rule entry (in raw LuaTgX table format) looks as follows:

[44] = |
["format"] = "coverage",
["rules"] = {
[1] = A
["coverage"] = {
["ncovers"] = {
[1] = "h.2",
[2] = "z.4",
}
¥,
["lookups"] = {
[1] = {
["lookup_tag"] = "L084",
["seq"] = 0,
}
}

90 Zapfingfonts

+
["script_lang_index"] = 1,
["tag"] = "calt",

["type"] = "chainsub"
+

Instead of reinventing the wheel, we used the FontForge libraries for reading the Open-
Type fontfiles. Therefore the LuaTgX table is resembling the internal FontForge data struc-
tures. Currently we show the version 1 format.

Here ncovers means that when the current character has shap;%h. 2) and the next
one is 5 (z.4) (a sequence) then we need to apply the lookup internally tagged L084.
Such arule can be more extensive, for instance instead of h.. 2 one can have a list of char-
acters, and there can be bcovers and fcovers as well, which means that preceding or
following character need to be taken into account.

When this rule matches, it resolves to a specification like:

[6] = {
["flags"] = O,
["1lig"] = {
["char"] = "h",
["components"] = "h.2 z.4",
¥,
["script_lang_index"] = 65535,
["tag"] = "L084",
["type"] = "ligature",
+

Here tagand script_lang_index are kind of special and are part of an private feature
system, i.e. they make up the cross reference between rules and glyphs. Watch how the
components don't match the character, which is even more peculiar when we realize
that these are the initials of the author of the font. It took a couple of Skype sessions and
mails before we came to the conclusion that this was probably a glitch in the font. So,
what to do when afont has bugs like this? Should one disable the feature? That would be
a pitty because a font like Zapfino depends on it. On the other hand, given the number
of rules and given the fact that there are different rule sets for some languages, you can
imagine that making up the rules and checking them is not trivial.

We should realize that Zapfino is an extraordinary case, because it used the OpenType
features extensively. We can also be sure that the problems will be fixed once they are
known, if only because Adam Twardoch (who did the job) has exceptionally high stan-
dards but it may take a while before the fix reached the user (who then has to update

Zapfingfonts 91

his or her font). As said, it also takes some effort to run into the situation described here
so the likelihood of running into this rule is small. This also brings to our attention the
fact that fonts can now contain bugs and updating them makes sense but can break exist-
ing documents. Since such fonts are copyrighted and not available on line, font vendors
need to find ways to communicate these fixes to their customers.

Can we add some additional checks for problems like this? For a while | thought that it
was possible by assuming that ligatures have names like h.2_z. 4 but alas, sequences of
glyphs are mapped onto ligatures using mappings like the following:

three fraction four.2 threequarters A

three fraction four threequarters %
dr d_r 1)>
e period e_period ¢)
£ i £i J{
f1 fl /
£ fi £ f i | ﬂ
f t f t ﬁ

Some ligature have no _intheir names and there are also some inconsistencies, compare
theflandf_f_i. Herefonthistoryis painfully reflected in inconsistency and no solution
can be found here.

So, in order to getrid of this problem, MkIV implements a method to ignore certain rules
but then, this only makes sense if one knows how the rules are tagged internally. So, in
practice this is no solution. However, you can imagine that at some point ConTgXt ships
with a database of fixes that are applied to known fonts with certain version numbers.

We also found out that the font table that we used was not good enough for our purpose
because the exact order in what rules have to be applies was not available. Then we
noticed that in the meantime FontForge had moved on to version 2 and after consulting
the author we quickly came to the conclusion that it made sense to use the updated
representation.

In version 2 the snippet with the previously mentioned rule looks as follows:

["ks latn 1 66 _c_19"]1={
["format"]="coverage",
["rules"]={

[11={
["coverage"]={
["current"]={
[1]="h.2",
[2]="z.4",

92 Zapfing fonts

+
s
["lookups"]={
[11={
["lookup"]="1s_1_84",
["seq"]=0,
+
}
}
+,
["type"]="chainsub",
s

The main rule table is now indexed by name which is possible because the order of rules
is specified somewhere else. The key ncovers has been replaced by current. As long
as LuaTgX is in beta stage, we have the freedom to change such labels as some of them
are rather FontForge specific.

This rule is mentioned in a feature specification table. Here specific features are associ-
ated with languages and scripts. This is just one of the entries concerning calt. You can
imagine that it took a while to figure out how best to deal with this, but eventually the
MKIV code could do the trick. The cryptic names are replacements for pointers in the
FontForge datastructure. In order to be able to use FontForge for font development and
analysis, the decision was made to stick closely to its idiom.

["gsub"]={
[(67]1={
["features"]={
[11={
["scripts"]={
[11={
["langs"]={
[1]="AFK ",
[2]="DEU ",
[3]="NLD ",
[4]="ROM ",
[6]="TRK ",
[6]="df1t",
},
["script"]="1latn",
}
,

Zapfingfonts 93

["tag"]="calt",
}
},
["name"]="ks latn_1 66",
["subtables"]={
[1]1={
["name"]="ks latn_1 66 _c_ 0",
},
[20]={
["name"]="ks latn_1 66 _c_19",
+,

+,
["type"]="gsub_context_chain",
},

practice

The few snapshots of the font table probably don't make much sense if you haven't seen
the whole table. Well, it certainly helps to see the whole picture, but we're talking of a
14 MB file (1.5 MB bytecode). When resolving ligatures, we can follow a straightforward
approach:

e walk over the nodelist and at each character (glyph node) call a function
e this function inspects the character and takes a look at the following ones
e when aligature is identified, the sequence of nodes is replaced

Substitutions are not much different but there we look at just one character. However,
contextual substitutions (and ligatures) are more complex. Here we need to loop over a
list of rules (dependent on script and language) and this involves a sequence as well as
preceding and following characters. When we have a hit, the sequence will be replaced
by another one, determined by a lookup in the character table. Since this is a rather
time consuming operation, especially because many surrounding characters need to be
taken into account, you can imagine that we need a bit of trickery to get an acceptable
performance. Fortunately Lua is pretty fast when it comes down to manipulating strings
and tables, so we can prepare some handy datastructures in advance.

When testing the implementation of features one need to be aware of the fact that some
appearance are also implemented using the regular ligature mechanisms. Take the fol-
lowing definitions:

94 Zapfingfonts

\definefontfeature

[none]

[language=dflt,script=latn,mode=node,liga=no]
\definefontfeature

[calt]

[language=dflt,script=latn,mode=node,liga=no,calt=yes]
\definefontfeature

[clig]

[language=dflt,script=latn,mode=node,liga=no,clig=yes]
\definefontfeature

[dlig]

[language=dflt,script=latn,mode=node,liga=no,dlig=yes]
\definefontfeature

[1igal]

[language=dflt,script=latn,mode=node]

This gives:

none s the. jmféa winnow the wheat
calt m fé jm%ofr WL Z?L/e mé;a‘
clig ¢ /@fﬁw winnow the wheat
dlig e de me/z‘wéﬂéf winnew the wheat
liga o the. jum@; winnow the wheat

Here are Adam's recommendations with regards to the d1ig feature: “The d1ig feature
is supposed to by use only upon user's discretion, usually on single runs, words or even
pairs. It makes little sense to enable d1ig for an entire sentence or paragraph. That's how
the OpenType specification envisions it.”

When testing features it helps to use words that look similar so next we will show some
examples that used. When we look at these examples, we need to understand that when
a specific character representation is analyzed, the rules can take preceding and follow-
ing characters into account. The rules take characters as well as their shapes, or more
precisely: one of their shapes since Zapfino has many variants, into account. Since dif-
ferent rules are used for languages (okay, this is limited to only a subset of languages that
use the latin script) not only shapes but also the way words are constructed are taken into
account. Designing te rules is definitely non trivial.

Zapfing fonts 95

When testing the implementation we ran into cases where the initial t showed up wrong,
for instance in the the Dutch word troef. Because space can be part of the rules, we
need to handle the cases where words end and start and boxes are then kind of special.

troef troef troef troeftroef troef \par

\ruledhbox{troef troef troef troeftroef troef} \par
\ruledhbox{troef 123} \par

\ruledhbox{troef} \ruledhbox{troef } \ruledhbox{ troef} \ruledhbox
{ troef } \par

o o
ﬁnm/;ﬁw%;m%/;mwfg;azéva

éﬂ%fGQZf
A

,\

71T
/

IS

Lol

I

énu#r
A4

Unfortunately, this does not work well with punctuation, which is less prominent in the
rules than space. In our favourite test quote of Tufte, we have lots of commas and there
it shows up:

review review review, review \par
itemize, review \par
itemize, review, \par

redienw reveeqy redienr, rediea
wemise, rediear
wemise, redien,

Of course we can decide to extend the rule base at runtime and this may well happen
when we experiment more with this font.

The next one was one of our first test lines, Watch the initial and the Zapfino ligature.

Welcome to Zapfino

}kéd;maf%

96 Zapfing fonts

For a while there was a bug in the rule handler that resulted in the variant of the y that
has a very large descender. Incidentally the word synthesize is also a good test case
for the the pattern which gets special treatment because there is a ligature available.

synopsize versus synthesize versus
synthase versus sympathy versus synonym

ﬂ%‘&@/ versuy 7/&@0@ z)e/gz{{jﬁzzjyéja versuys 2// ﬂ% yegzg;/wxz n
Here are some examples that use the g, d and £ in several places.

eggen groet ogen hagen \par
dieren druiven onder aard donder modder \par
fiets effe flater triest troef \par

pg%u%jﬁm%fgfazf%;e@
. i o o endlr ol

st it

Let's see how well Hermann has taken care of the h's representations. There are quite
some variants of the lowercase one:

[mp = = = = = N = N =
g W N
2 ! %\% :

How about the uppercase variant, as used in his name:

M Mr Mr. H He Her Herm Herma Herman Hermann Z Za Zap Zapf \par
Mr. Hermann Zapf

MM D H He Hlor Florm Eorma Jlorman Hermann 220 S =/

Zapfing fonts 97

N omuns Zgpf

Of course we have to test another famous name:

D Do Don Dona Donal Donald K Kn Knu Knut Knuth \par
Don Knuth Donald Knuth Donald E. Knuth DEK \par
Prof. Dr. Donald E. Knuth \par

D Do Den @(H{/& Dm/@wmgf &Lﬂ% Rt %«f/
Den Knth Danald Knth Donall €. Rauth DEXK
e D Dol £ Rt

Unfortunately the Lua and TgX logos don't come out that well:

L Lu Lua 1 1lu lua t te tex TeX luatex luaTeX LuaTeX

lfzf%wf£;w0ézé:é%@JLﬁaﬁ%;CZZifé;a%fzé%i@;¥/¢ébmb7ékf

This font has quite some ornaments and there is an ornm feature that can be applied.
We're still not sure about its usage, but when one keys in text in lowercase, hermann
comes out as follows:

@%ﬂ,ff\\

O Vs e B = =y

As said in the beginning, dirty implementation details will be kept away from the reader.
Also, you should not be surprised if the current code had some bugs or does some things
wrong. Also, if spacing looks a bit weird to you, keep in mind that we're still in the middle
of sorting things out.

Cace. a{mé&r G & ﬁug ;%\%@/&

98 Zapfing fonts

Xl Arabic

Let's start with admitting that | don't speak or read Arabic, and the sample texts used here
are part of what we use in the Oriental TgX project for exploring advanced Arabic typeset-
ting. This chapter will not discuss arab typesetting in much detail, but should be seen as
complementing the ‘Onthology on Arabic Typesetting” written by Idris. Here | will only
show what the consequences are of applying features. Because we see glyphs but often
still deal with characters when analyzing what to do, we will use these terms mixed.

The fontthat we use here is the ‘arabtype’ font by MicroSoft. This font covers Latin scripts
and Arabic and has a rich set of features. It's also a rather big font, so it is a nice torture
test for LuaTgX.

First we show what MkIV does with a sequence of characters when no features are en-
abled by the user. We have turn on color tracing. This gives us some feedback about
the how the analyze worked out. Analyzing for Arabic boils down to marking the initial,
mid, final and isolated forms. We don't need to explicitly enable analyzing, it's on by de-
fault. Themode flagis settonode because we cannot use TeX's default mechanism. When
LuaTgX and MKIV are beyond beta stage, we will use that mode by default.

w
analyze=yes, features=yes, language=dflt, ,Q J J
mode=node, script=arab

~ ~

G b s ey SR st S S M

- -0 - P

SRS el) e U) s A
md/ R, N 2N R 3 g

o2 plomdo a3zp Sl op 2o atre 200ts Spr add e
AT a5 e A R e AL
&uﬂgd o

/ ~

BEENIPRY ru“ Tl /Z\JJTJJ ‘U}/CDJ\J ooedls Sl t ol

Once these forms are identified, the init, medi, finaand isol features can be applied
since they need this information. As you can see, different shapes show up. The vowels
(marks in OpenType speak) are not affected. It may not be entirely clear here, but these
vowels don't have width.

Arabic 99

~

-~

analyze=yes, ccmp=yes, features=yes,
language=dflt, mode=node, script=arab

2

AoBdl de casze TP SR sz 08 7 8l 37

S 55700 0 i s S Do s g7 s
TSrodls 5dadl ¢ \wC’U 0 hr ‘Z}UCU/ e edls Soadh tde

sloodl il eorp Sl o S5 <e’°9rcr’ S adderd

SRS sl Sl e B LA St D
SIsrodls S50 ¢ el CU JJ’UJ‘JJJCJ\J ool el &%J

We start with some preparations with regards to combinations of marks. This is really
needed in order to get the right output.

analyze=yes, ccmp=yes, features=yes, fina=yes,)
init=yes, isol=yes, language=dflt, medi=yes, m

mode=node, script=arab _

03 - 0 -~

‘\:UM J{btﬂ L»Jac.)om bvuo f%ﬂ(v\o?d; rx@.\wéﬁw
3 00, Syl N SR S el Sl e L 20
R IO X\ G (B

0s ~ 0~

sl > ;L» ;\lﬁ\g\;& FRE L"”uﬁbf"" paves d)‘” Ve 4133.{:4\

s G, b 2 B
obmdlly JSAN, L, 15,

The order in which features are applied is dictated by the font and users don't need to

bother about it. In the next example we enable the mark and mkmk features. As with
other positioning related features, these are normally applied late in the feature chain.

analyze=yes, ccmp=yes, features=yes, fina=yes, w
init=yes, isol=yes, language=dflt, mark=yes, !SS
medi=yes, mode=node, script=arab e

100 Arabic

ol ol 51 Nl oo \”‘zzvﬁcm J«Mwaﬁi\m&
He s S C*S‘ Epedls Sgdl gle sl 558

w;ﬁs Las iy 215

o L,Ms,‘\ju;u\ L cordes x,wg;ﬂia.\mdﬂ iss A Sasd
5 ol 55 63‘3 4&3\3};;4\3 Bydly Syl 3e sl o5t
sy S35 el 5715 Bp

The mark feature positions marks (vowels) relative to characters, also known as mark to
base. The mkmk feature positions marks to basemarks.

analyze=yes, ccmp=yes, features=yes, fina=yes, o
init=yes, isol=yes, language=dflt, mark=yes, ! ‘ !
medi=yes, mkmk=yes, mode=node, script=arab Y

) 2 LS8 LB el ot o e 3 0 iy 3 i s ol sed
s Ry SH s GG s gl JAJBJ 4

ksl S35 e iy 21550,

\a—“

U y jc\fb;«u\o\.‘»&:com L’uwdﬂcbi@udﬂv\&;ww\
j Q‘é{"“j\j < j C«S\j c‘j‘iss\j j:s;J\j c; >\ 5 u‘“ ij>- LSJJ \)
:/O/ jud\ wU\jCj j

Kerning depends on the font. Some fonts don't need kerning, others may need extensive
relative positioning of characters (by now glyphs).

analyze=yes, ccmp=yes, features=yes, fina=yes, \
init=yes, isol=yes, kern=yes, language=dflt, 4
mark=yes, medi=yes, mkmk=yes, mode=node, 4LU

script=arab

Arabic 101

.\
\
k&.\
\
\Ki\
\
-
'\
B\ \
\
\
\ -
"
\
\
[aY
'\
)
\
E\,
3
\
\
[aY
\
\
\
\
.
\
\
\
e
\E\
[aY
A}
\
Cc\
N
c—

J&;Jj J{u;«& "ﬂw.)o:.o bvwdﬂcamuﬂmww

/ -
~

RTINS l5 <5l s GEl 58 Gasdly S BlE el 6736 U
sastlly S35 L;x,u,@Jm

So far we only had rather straightforward replacements. More sophisticated replace-
ments are those driven by the context. In principle all replacements can be context dri-
ven, but the calt and clig features are normally dedicated to the real complex ones
that take preceding and following characters into account.

analyze=yes, calt=yes, ccmp=yes, features=yes, \
fina=yes, init=yes, isol=yes, kern=yes, “
language=dflt, mark=yes, medi=yes, mkmk=yes, A\‘U

mode=node, script=arab

v

ods ST el st oy e S iy

-

ISR
6»4 CATPPATFE PP et P Ep fso»eiwsu
s S5 las s

L

¥ -,

O.&;Jj J{Lighfﬂ\o’,(om buuﬁdj,\aﬁcam&).\mwmw
5 05 5205 gy 555 el ey o e ol st
ol f.\S L:“;UJCJJU\J

Ligatures are often used to beautify Arabic typeset documents. Here we enable the whole
lot.

102 Arabic

analyze=yes, ccmp=yes, clig=yes, dlig=yes,
features=yes, fina=yes, init=yes, isol=yes, M
kern=yes, language=dflt, liga=yes, mark=yes, 6115
medi=yes, mkmk=yes, mode=node, rlig=yes, e
script=arab

o

;uuucmuw}mwﬁ jsd

4M
Kfsjm A5 5 A5 5eds daedis S j,-u;‘

9

el S35

U"‘“"Jﬁ cJ{L.u ;LJ /: co.,\m \5— B ;ﬁrm caJmﬁ- drm .«\:?' 405 .«\.o?J
Kadly o2ll; 2l @Jb ﬁé\jfd Sl gl caill o122k ol
Seally £ plas s #5590,

Kerning deals with horizontal displacements, but curs (cursive) goes one step further.
As with marks, positioning is based on anchor points and resolving them involves a bit
of trickery because one needs to take into account that characters may have vowels at-
tached to them.

E\ E\
288

0\
o\

E\ ®©

analyze=yes, ccmp=yes, clig=yes, curs=yes,
dlig=yes, features=yes, fina=yes, init=yes, M
isol=yes, kern=yes, language=dflt, liga=yes, ‘1A5
mark=yes, medi=yes, mkmk=yes, mode=node, - -
rlig=yes, script=arab

juuu(muw"ﬂwﬂ A sl

%S»A (K /

@
@

A 5 A s gl o j 15)
e S5 ol 2

N FTIA _ ey o
oy AL) Glad s Jla e O aix O de L Sl

RYATENG: 5‘,2\/*“~\,r<,¢},4\ cwsjursdx, Codll <1728 asY)
olly 5 sy #1553

i\ E\

PZ3381Y

Arabic 103

One script can serve multiple languages so let's see what happens when we switch to
Urdu.

analyze=yes, ccmp=yes, clig=yes, curs=yes,
dlig=yes, features=yes, fina=yes, init=yes, M
isol=yes, kern=yes, language=urd, liga=yes, ‘Lxs
mark=yes, medi=yes, mkmk=yes, mode=node, - -
rlig=yes, script=arab

o~

u,q.o:j J{L,ULJ w‘m uuﬁdf&o .,\05- J/»’-A &isz
FATRYIly @»ﬂfsﬁwbes 3 o
il B35 elas s 59

~ v, _ /g& o
wonC\JSL \LALMM u&djﬁw.\;ﬁdﬁmaxi@\

~

E\ E\
P23 383

=

1 &S5« all; a5 ,,J/PJ\W wéx,d;j
f.\l ‘r\"“"yJCJ)

In practice one will enable most of the features. In MkIV one can define feature sets as
follows:

PZ3381Y

\definefontfeature
[arab-default]
[mode=node,language=dflt,script=arab,
init=yes,medi=yes,fina=yes,isol=yes,
liga=yes,dlig=yes,rlig=yes,clig=yes,
mark=yes ,mkmk=yes,kern=yes, curs=yes]

Applying these features to fonts can be done in several ways, with as most basic one:
\font\ArabFont=arabtype*arab-default at 18pt

Normally one will do something like

\definefont [ArabFont] [arabtype*arab-default at 18pt]

or use typescripts to set up ap proper font collection, in which case we end up with def-
initions that look like:

104 Arabic

\definefontsynonym[ArabType] [name:arabtype] [features=arab-default]
\definefontsynonym[Serif] [ArabTypel

More information about typescripts can be found in manuals and on the ConTgXt wiki.

We end this chapter with showing two arabic fonts so that you can get a taste if the differ-
ences: arabtype by MicroSoft and Palatino which is designed by Herman Zapf for Lino-

type.

analyze=yes, ccmp=yes, clig=yes, curs=yes,
dlig=yes, features=yes, fina=yes, init=yes,
isol=yes, kern=yes, language=dflt, liga=yes,
mark=yes, medi=yes, mkmk=yes, mode=node,

\
S
\

rlig=yes, script=arab

J..oJ J{L.uu L,w\a(.)ow \Auﬁvfm ..\.oﬁ'— J/,‘.u .135:3
el oKy D s B 5l sy o g 93 e
s £ tes¥s 154

°

p”“2¥ ¢451w gLJ /:cqgéé)Lﬁ ip géjum cOA&4 J»w : 4& 245
Bl 558l 2 ’&Mj 5 5dl5 Bty sl Bl Gl 1156
ety 55 las P 2150

E\ i\
PZ3381Y

E\ ®
o

o\
A
on

analyze=yes, ccmp=yes, clig=yes, curs=yes, \
dlig=yes, features=yes, fina=yes, init=yes, Y
isol=yes, kern=yes, language=dflt, liga=yes,

mark=yes, medi=yes, mkmk=yes, mode=node,

rlig=yes, script=arab - -

Sy a8 e jmm o s dral dsd

.
- ~
[}

)l 56 el o0 @Y plds el LD

3 E\

Arabic 105

/ ~

Py G 9 £ 5
* " _ ~ o _ _ _ ‘ B
CC\SJ.;' M j@,‘ &QA_) ‘ 9"_;

~

c ©
~ - ~ -~ - ~ Oy/ ~ /Oj/
LAA«M-J).ébs)w‘ ¢ L~u~>

E\E\
‘E\E\

uLwl’ ¢°v\5)l5¢og.9j&o coxofdj.sz,o V\zal] 3\9,;]
E»BJ‘ EESR VTN IR £ ‘»,su C3)
“\S)-MS UM‘S gelg /&QJ‘s il j\.;‘g 409,}‘9
uwb)évdlg ﬁb&ﬁ‘ ij}lb

These fonts are quite different in designsize:

?—.\E\
E\E\

arabtype palatino

1 Opt test test
12pt test test
18pt test test

24pt test test

106 Arabic

XIV Colorsredone

introduction

Colorsupporthas been presentin ConTgXtright from the start and support has been grad-
ualy extended, for instance with transparency and spot colors. About 10 years later we
have the first major rewrite of this mechanism using attributes as implemented in LuaTgX.

Because | needed atestfile to check if all things still work as expected, | decided to recap
the most important commands in this chapter.

color support

The core command is \definecolor, so let's define a few colors:

\definecolor
\definecolor
\definecolor
\definecolor
\definecolor
\definecolor

[yellow]
[magental

[r=1]
[g=1]
[b=1]
[y=1]
[m=1]
[c=1]

This gives us the following colors:

color

black

\definecolor
\definecolor
\definecolor

color

black

white magenta
white

As you can see in this table, transparency is part of a color specification, so let's define a
few transparent colors:

[t-green]
[t-bluel

transparency

[r=1,a=1,t=.5]
[g=1,a=1,t=.5]
[b=1,a=1,t=.5]

transparency

a=1.000 t=0.500 r=1.000 g=0.000 b=0.000

H KB K
O O =

O 0 0
= O O

specification

.000
.000
.000

.000
.000
.000

specification

(ﬁ"o‘o‘
= O O

<«

O O -

.000
.000
.000

Colors redone

black t-green a=1.000 t=0.500 r=0.000 g=1.000 b=0.000
t-blue a=1.000 t=0.500 r=0.000 g=0.000 b=1.000

Because transparency is now separated from color, we can define transparent behaviour
as follows:

\definecolor [half-transparent] [a=1,t=.5]

Implementing process color spaces was not that complex, but spot and multitone colors
took a bit more code.

\definecolor [parentspot] [r=.5,g=.2,b=.8]
\definespotcolor [childspot-1] [parentspot] [p=.7]
\definespotcolor [childspot-2] [parentspot] [p=.4]

The three colors, two of them are spot colors, show up as follows:

color name transparency specification
parentspot r=0.500 g=0.200 b=0.800
childspot-1 p=0.700
childspot-2 p=0.400

Multitone colors can also be defined:

\definespotcolor [spotone] [red] [p=1]
\definespotcolor [spottwo] [green] [p=1]

\definespotcolor [spotone-t] [red] [a=1,t=.5]
\definespotcolor [spottwo-t] [green] [a=1,t=.5]

\definemultitonecolor
[whatever]
[spotone=.5,spottwo=.5]
[b=.5]

\definemultitonecolor
[whatever-t]
[spotone=.5,spottwo=.5]
[b=.5]

[a=1,t=.5]

Transparencies don't carry over:

color name transparency specification

spotone p=1.000

108 Colorsredone

white spottwo p=1.000
white spotone-t a=1.000 t=0.500 p=1.000
black spottwo-t a=1.000 t=0.500 p=1.000

white whatever p=.5,.5
white whatever-t a=1.000 t=0.500 p=.5,.5

Transparencies combine as follows:

\blackrule[width=3cm,height=1cm,color=spotone-t]\hskip-1.5cm
\blackrule[width=3cm,height=1cm,color=spotone-t]

We can still clone colors and overload color dynamically. | used the following test code
for the MkIV code:

{\green green->red}
\definecolor[green] [g=1]
{\green green->green}
\definecolor [green] [blue]
{\green green->blue}
\definecolor[blue] [red]
{\green green->red}
\freezecolorstrue
\definecolor[blue] [red]
\definecolor [green] [blue]
\definecolor[blue] [r=1]
{\green green->blue}

green->red green->green green->blue green->red green->blue

Of course palets and color groups are supported too. We seldom use colorgroups, but
here is an example:

\definecolorgroup
[redish]
[1.00:0.90:0.90,1.00:0.80:0.80,1.00:0.70:0.70,1.00:0.55:0.55,
1.00:0.40:0.40,1.00:0.25:0.25,1.00:0.15:0.15,0.90:0.00:0.00]

The redish color is called by number:

\blackrule[width=3cm,height=1cm,depth=0pt,color=redish:1]\quad
\blackrule[width=3cm,height=1cm,depth=0pt,color=redish:2]\quad
\blackrule[width=3cm,height=1cm,depth=0pt,color=redish:3]

Colorsredone 109

Palets work with names:

\definepalet
[complement]
[red=cyan,green=magenta,blue=yellow]

This is used as:

\blackrule[width=1cm,height=1cm,depth=0pt,color=red]\quad
\blackrule[width=1cm,height=1cm,depth=0pt,color=green]\quad
\blackrule[width=1cm,height=1cm,depth=0pt,color=blue]\quad
\setuppalet [complement]?,
\blackrule[width=1cm,height=1cm,depth=0pt,color=red]\quad
\blackrule[width=1cm,height=1cm,depth=0pt,color=green]\quad
\blackrule[width=1cm,height=1cm,depth=0pt,color=blue]

Rasters are still supported but normally one will use colors:

\raster[.5]{\blackrule[width=3cm,height=1cm] }\quad
\raster[.8]{\blackrule[width=3cm,height=1cm] }

Of course the real turture test is MetaPost inclusion:

\startMPcode
path p ; p := fullcircle scaled 4cm ;
fill p withcolor \MPcolor{spotone-t} ;

fill p shifted(2cm,0cm) withcolor \MPcolor{spottwo-t} ;
\stopMPcode

These transparent color circles up as:

110 Colors redone

Multitone colors also work:

\startMPcode
path p ; p := fullcircle scaled 2cm ;
fill p withcolor \MPcolor{spotone} ;

fill p shifted(2cm,0cm) withcolor \MPcolor{spottwol} ;
fill p shifted(4cm,0cm) withcolor \MPcolor{whatever} ;
\stopMPcode

This gives:

implementation

The implementation of colors using attributes if quite different from the traditional method.
In Mkl color support works okay but the associated code is not that clean, if only be-
cause:

we need to keep track of grouped color usage

and we do that using dedicated marks (using TeX's mark mechanism)
since this has limitations, we have quite some optimizations

like local (no marks) and global colors (marks)

and real dirty code to push and pop color states around pages

and some messy code to deal with document colors

and quite some conversion macros (think of TeX not having floats)

Although recent versions of pdfTgX have a color stack mechanism, this is not adequate
for our usage, if only because we support more colorspaces than this mechanism is sup-
posed to deal with. (The color stack mechanism is written with a particular macro packag
ein mind.)

In MKIV attributes behave like colors and therefore we no longer need to care about
what happens at pageboundaries. Also, we no longer have to deal with the limitations of
marks. Here:

e we have distributed color spaces, color itself and transparency
e allinjection of backend code is postponed to shipout time
e definition and conversion is delegated to Lua

Of course the current implementation is not as nice as we would like it to be. This be-
cause:

Colors redone 111

e support mechanism are under construction
e we need to support both Mkll and MkIV in one interface
e backend support is yet limited

Although in principle a mechanism based on attributes is much faster than using marks
cum suis, the new implementation is slower. The main reason is that we need to finalize
the to be shipped out box. However, since this task involved more than just color, we
will gain back some runtime when other mechanisms also use attributes.

complications

This paragraph is somewhat complex, so skip itwhen you don't feel comfortabel with the
subject of when you've never seen low level ConTgXt code.

Attributes behave like fonts. This means that they are kind of frozen once material is
boxed. Consider that we define a box as follows:

\setboxO{default {\red red \green green} default}

What do you expect to come out the next code? In MklI the ‘default’ inside the box will
be colored yellow but the internal red and and green words will kepe their color.

default {\yellow yellow \boxO\ yellow} default

When we use fonts switches we don't expect the content of the box to change. So, in the
following the ‘default’ texts will not become bold.

\setbox0{default {\sl slanted \bi bold italic} default}
default {\bf bold \boxO\ bold} default

Future versions of LuaTgX will provide more control over how attributes are applied to
boxes, but for the moment we need to fallback on a solution built in MkIV:

default {\yellow yellow \attributedboxO\ yellow} default

Thereisalsoa\attributedcopy macro. These macros signal the attribute resolver (that
kicks in just before shipout) that this box is to be treated special.

In Mkll we had a similar situation which is why we had the option (only used deep down
in ConTgXt) to encapsulate a bunch of code with

\startregistercolor[foregroundcolor]
some macro code ... here foregroundcolor is applied ... more code
\stopregisteringcode

112 Colorsredone

Thisisforinstance used in the \framed macro. Firstwe package the content, foreground-
coloris notyetapplied because the injected specials of literals can interfere badly, but by
registering the colors the nested color calls are tricked into thinking that preceding and
following content is colored. When packaged, we apply backgrounds, frames, and fore-
groundcolor to the whole result. Because nested colors were aware of the foreground-
color they have properly reverted to this color when needed.

In MkIV the situation is reversed. Here we definitely need to set the foregroundcolor be-
cause otherwise attributes are not set and here they don'tinterfere at all (no extra nodes).
For this we use the same registration macros. When the lot is packaged, applying fore-
groundcolor is ineffective because the attributes are already applied. Instead of register-
ing we could have flushed the framed content using \attributedbox, but this way we
can keep the Mkll and MkIV code base the same.

To summarize, first the naive approach. Here the nested colors know how to revert, but
the color switch can interfere with the content (since color commands inject nodes).

\setbox\framed\vbox
{\color[foregroundcolor]{packaged framed content, can have color
switchesl}}

The Mkll approach registers the foreground color so the nested colors know what to do.
There is no interfering code:

\startregistercolor[foregroundcolor]

\setbox\framed

\stopregisteringcode
\setbox\framed{\color[foregroundcolor] {\box\framed}}

The same method is used in Mkll, but there the registration actually sets the color, so in
fact the final coloring is not needed (does nothing).

An alternative MkIV approach is the following:

\color
[foregroundcolor]
{\setbox\framed{packaged framed content, can have color switches}}

This works ok because attributes are applied to the whole content, i.e. the box. In Mkl
this would be quote ineffective and actually result in weird side effects.

< color stack is pushed and marks are set (unless local) >
< color special or literal sets color to foregroundcolor >
\setbox\framed{packaged framed content, can have color switches}
< color special or literal sets color to foregroundcolor >
< color stack is popped and marks are set (unless local) >

Colors redone 113

So, effectively we set a box, and end up with:

< whatsits (special, literal and.or mark) >
< whatsits (special, literal and.or mark) >

in the main vertical lost and that will interfere badly with spacing and friends.

In MKIV however, a color switch, like a font switch does not leave any traces, it just sets
a state. Anyway, keep in mind that there are some rather fundamental conceptual differ-
ences between the two appoaches.

Let's end with an example that demonstrates the problem. We fill two boxes:

\setbox0\hbox{RED {\blue blue} RED}
\setbox2\hbox{RED {\blue blue} {\attributedcopyO} RED}

We will flush these in the following lines:

{unset \color[red]{red \CopyMel} unset
\color[red]{red \hbox{red \CopyMel}} unset}
{unset \color[red]{red \CopyMe} unset
{\red red \hbox{red \CopyMel}} unset}
{unset \color[red]{red \CopyMe} unset
{\red red \setboxO\hbox{red \CopyMe}\box0} unset}
{unset \color[red]{red \CopyMel} unset
{\hbox{\red red \CopyMel}} unset}
{\blue blue \color[red]{red \CopyMe} blue
\color[red]{red \hbox{red \CopyMe}} blue}

First we define \CopyMe as follows:
\def\CopyMe{\attributedcopy2\ \copy4}
This gives:

unset red RED blue RED blue RED RED unset red red RED blue RED blue RED RED unset
unset red RED blue RED blue RED RED unset red red RED blue RED blue RED RED unset
unset red RED blue RED blue RED RED unset red red RED blue RED blue RED RED unset
unsetred RED blue RED blue RED RED unsetred RED blue RED blue RED RED unsetblue
red RED blue RED blue RED RED blue red red RED blue RED blue RED RED blue

Compare this with:
\def\CopyMe{\copy2\ \copy4}

This gives:

114 Colors redone

unset red RED blue RED blue RED RED unset red red RED blue RED blue RED RED unset
unset red RED blue RED blue RED RED unset red red RED blue RED blue RED RED unset
unset red RED blue RED blue RED RED unset red red RED blue RED blue RED RED unset
unsetred RED blue RED blue RED RED unsetred RED blue RED blue RED RED unsetblue
red RED blue RED blue RED RED blue red red RED blue RED blue RED RED blue

You get the picture? At least in early version of MkIV you need to enable support for
inheritance with:

\enableattributeinheritance

Colorsredone 115

116 Colors redone

XV Chinese, Japanese and Korean, aka CJK

This aspect of MkIV is under construction. We use non-realistic examples. We need to reim-
plement chinese numbering in Lua, etc. etc.

todo: There is no need for checkinfthe width if the halfwidth feature is turned on.

introduction

In ConTeXt MkIl we support cjk languages. Intercharacter spacing as well as linebreaks
are taken care of. Chinese numbering is dealt with and labels and other language specific
aspects are supported too. The implementation uses active characters and some special
encoding subsystem. Although it works quite okay, in MkIV we follow a different route.

The current implementation is an intermediate one and is used to explore the possibili-
ties and identify needs. One handicap in implementing cjk support is that the wishlist of
features and behaviour is somewhat dependent on who you talk to. This means that the
implementation will have some default behaviour but can be tuned to specific needs.
The current implementation uses the script related analyser and is triggered by fonts but
at some point I may decide to provide analysing independent of fonts.

As will all things TgX, we need to find a proper font to get our document typeset and
because cjk fonts are normally quite large they are not always available on your system
by default.

scripts and languages

I'm no expert on cjk and will never be one so don't expect much insight in the scripts
and languages here. Here we only look at the way a sequence of characters in the input
turns into a typeset paragraph. For that it is important to keep in mind that in a Korean
or Japanese text we might find Chinese characters and that the spacing rules become
somewhat fuzzed by that. For instance Korean has spaces between words and words
can be broken at any point, while Chinese has no spaces.

Officially Chinese runs from top to bottom but here we focus on the horizontal variant.
When turned into glyphs the characters normally are of equal width and in principle we
could expect them all to be vertically aligned. However, a font can have characters that
take half that space: so called halfwidth characters. And, of course, in practice a font
might have shapes that fall into this categrory but happen to have their own width which
deviates from this.

This means that a mechanism that deals with cjk has to take care of a few things:

Chinese, Japanese and Korean, aka CJK 117

e Spaces at the end of the line (or actually anywhere in the input stream) need to be
removed but only for Chinese.

e Opening and closing symbols as well as punctuation needs special treatment espe-
cially when they are halfwidth.

e Korean uses proportially spaces punctuation and mixes with other latin fonts, while
Chinese often uses built in latin shapes.

e We may break anywhere but not after an opening symbol like (or and not before a
closing symbol like).

e We need to deal with mixed Chinese and Korean spacing rules.

Let's start with showing some Korean. We use one of the fonts shipped by Adobe as part
of Acrobat but first we define a Korean featureset and a font.

\definefontfeature
[korean]
[script=hang,language=kor ,mode=node,analyze=yes]

\definefont [KoreanSample] [adobemyungjostd-medium*korean]
Korean looks like this:

\KoreanSample \setscript[hangul]

17 Hold WRE 4GS 1 E293 Aol o] BEF.
;:ﬂl-‘f_ JOE o]/v"IJJr O‘t)]\:]-% l"j_o%l‘ﬂ:l—o th }\1§ ?ﬂxﬂoHJ FHJ\]Oo 72

of o} et
o u e A2 1 93 Ao glo] FEeht

= Fogton M2 gAlofe] Jaor P-gslofof

o

offt &Y rr

0,
&woo

.

o2,

A7
o]

o -
e A

o},

(o rn

!

e

oX o
)

b

The Korean script reflect syllabes and is very structured. Although modern fonts contain
prebuilt syllabes one can also use the jamo alphabet to build them from components.
The following example is provided by Dohyun Kim:

\definefontfeature [medievalkorean] [mode=node,script=hang,lang=kor,ccmp=yes,1ljmo=ye
\definefontfeature [modernkorean] [mode=node,script=hang,lang=kor]

\enabletrackers[scripts.analyzing]

\setscript [hangull]

\definedfont [UnBatang*medievalkorean at 20pt] \ruledhbox{} \ruledhbox{}
\ruledhbox{}\blank

\definedfont [UnBatang*modernkorean at 20pt] \ruledhbox{} \ruledhbox{}
\ruledhbox{}\blank

\disabletrackers[scripts.analyzing]

118 Chinese, Japanese and Korean, aka CJK

There are subtle differences between the medieval and modern shapes. It was this ex-
ample that lead to more advanced tounicode support in MkIV so that copy and paste
works out well now for such input.

For Chinese we define a couple of features

\definefontfeature
[chinese-traditionall]
[mode=node,script=hang,lang=zht]
\definefontfeature
[chinese-simple]
[mode=node,script=hang,lang=zhs]
\definefontfeature
[chinese-traditional-hw]
[mode=node,script=hang,lang=zht,hwid=yes]
\definefontfeature
[chinese-simple-hw]
[mode=node,script=hang,lang=zhs,hwid=yes]

\definefont [ChineseSampleFW] [adobesongstd-light*chinese-traditional]
\definefont [ChineseSampleHW] [adobesongstd-light*chinese-traditional-hw]
\setscript [hanzi]

\ChineseSampleFW

g 1, £ DAL C AR v 5 R PV S 3 i 2 0 R e 105 7 ol
CHINCE S e Nk o P IA Ev e G S vRUrE g =R L7/ 2]
13 70k 707 I s A A S 2 P MR A S R e 1
D o S A

\ChineseSampleHW

g 1, £ DAL 7L ORI v 6 B P A 3 i 2 00 B e 195 2 e R
Bl AR EIERD (R REE Tk IR SRR
1330k i I B 7 A A 4 S 0 A R A 0 MO e e B
i R o I I T A

gt DR FEL TR IR e 0 PR o e 5 5 L R R B A8 DR T N AR MR e B> (&3MLIE

5 5 R 4 R 0540 5 5 2 S
BRI AR

Chinese, Japanese and Korean, aka CJK 119

gt AT FEL T IR e 0 PR U S e 5 5 L RS R B A8 DR T B AR MR B> (&3MLIE
IREEMHIR G5 5[5 H‘é%iﬂ%ﬁﬁ@’”%{m%%ﬁ%iﬁﬂi‘%ﬁﬁﬁﬁﬁ(ﬁ%%iﬁ%ﬁu%@%ﬁﬁé HLE AP

TE BRI A o

A few more samples:

\definefont [ChFntAT] [name:
\definefont [ChFntBT] [name:
\definefont [ChFntCT] [name:

\definefont [ChFntAS] [name:
\definefont [ChFntBS] [name:
\definefont [ChFntCS] [name:

adobesongstd-light*chinese-traditional-hw at
songti*chinese-traditional at
fangsong*chinese-traditional at

adobesongstd-light*chinese-simple-hw at
songti*chinese-simple at
fangsong*chinese-simple at

In these fonts traditional comes out as follows:

ﬁ< e PG S
% (e FIgEmAE5) i
(%‘E%‘Tﬁi%ﬁZﬂ%%) B

And simple as:

§ 1@?%%%7
Hb
& (BEAETFIH WA

tracing

NVE-&
¥ FHOEM A S) 4
&)

O

il
o

o

/fz"‘o
S
.

16pt]
16pt]
16pt]

16pt]
16pt]
16pt]

As usual in ConTgXt, we have some tracing built in. When you say

You will get the output colored according to the category that the analyser put them in.
When you say

some rudimentary information will be written to the log about whet gets inserted in the
nodelist.

Analyzed input looks like:

ofol, thi= ol Ao} & (i)
ot B4 gt o

g AT vhgo] ofFE A ol %ol
= mlf? A= BHal &5 Flo]

Hs sl ol s A 1A W wpR7E ks ghsgel]
g3 A Bz Aelgler g, s =rjo] ExF umE =3

ol ¥¢1, F55 7Y ¥E Eoa b Sl gkttt

gyl wolAm ot BE $& Au, FE 23 Ao,
B2 Be A, B2 YL A Zelth olAlol i ntge

120 Chinese, Japanese and Korean, aka CJK

aul Wold A wae Holuw, U A 4E Lel7h gz

25 obF W AUEUE Aol Qo] eI A sk kL) s

A G B 2 2ot

ofo}, b olAlok E (i) & WHETE vheo] of T2 A o] Ho] = () 7} 67
Sreth olERbE Wi A W B glo] B A ol Hi Aol oA
W vhR e whgel] WA atel delglom®, b Sro] £4F mw & k5ol
ol 97, F2E TRe $g oq kg fo] kel il WolXw Zolu}
B2 B BE R 4o $2 58k, B2 A9 48 A0 ol
U e dold e B deln u A 2 et gol A,

oFE W AVEUE 240] Gof o4 NelA Ao} (k) 3 717 (i) S A

@k,
For developers (and those who provide them with input) we have another tracing

\definedfont [arialuni*korean at 10pt] \setscript[hangul] \ShowCombination-
sKorean

We need to use a font that supports Chinese as well as Korean. This gives quite some

output.

B hyphen + hyphen
=L LD LD hyphen + full_width_close
—tE=LF : hyphen + chinese

Aom

— =0 r 07 [J hyphen + half_width_close
—+ZH=[_7y . .72t hyphen + korean

= . [.K hyphen + full_width_open

e tTM=[M M [0OM M hyphen + other
—t&I=1.4] (.% hyphen + non_starter

A

— =01 D D (.7 hyphen + half_width_open
i+ =D_JDl.. BJ...2J. full_width_close + hyphen
RI+DI=D2T DD DD full width_close + full width_close
DI+ E=D_& D] ; full_width_close + chinese
I3
Rl+o=01 DI BI” full width_close + half width_close
21+ZH=D_7H D] j > 2t full _width_close + korean
ZH 5t
D+ =0_< D] 1 DK full width_close + full_width_open
K
2I+M=0M RPIM [RIM full_width_close + other

Chinese, Japanese and Korean, aka CJK 121

pl+RI=D 4 Dl D4 full width_close + non_starter
Rl+i=0_1 D ﬂ full_width_close + half_width_open
&+ . .=KE. E. . K] chinese + hyphen
B+D]=FE] B ®)) chinese + full width close
+=g E JEF chinese + chinese
B+1=FE B B] chinese + half width_close
&+ =72 & T EJl chinese + korean
ZH Gt
B+ (=E F T FEK chinese + full_width_open
1<
F+M=FEM EM [FEM [FEM chinese + other
B+ %I=FE4% F j 5% chinese + non_starter
ked
B+i=F F T 5] chinese + half_width_open
"+_.=r) 11 [l [half_width_close + hyphen
n+D =01 o half width_close + full width_close
1+E=F B & half width_close + chinese
n+0="0 7 1 1 half width_close + half _width_close
1+ ZH=[ZH ‘7t half width_close + korean
1+=[(K half width_close + full_width_open
l+M=IM ™ ™ M1 half width_close + other
0+ &=1%] 4 [% (%] half width_close + non_starter
I+0="0 1 1 31 half_width_close + half_width_open
ZH+ _=@ZE.J ZH.. .. ZE]. korean + hyphen
ZE+D1=EB] ZB [EZH korean + full width_close
78+ & = 7L g l korean + chinese
ZB+01=ZH ZF @ [ZF] korean + half width_close
78+ ZH=[2tZH 7K T 7t2t korean + korean
7H ot
ZH+[=2L(7F ji ZEX korean + full_width_open
1<
ZH+M=ZtM [ZEM [Zim korean + other
78+ %1=[7t%] [7H j} korean + non_starter
ked
ZH+8=EH [ZH]P korean + half_width_open
[+ =K [K. X full_width_open + hyphen

122 Chinese, Japanese and Korean, aka CJK

REDASIRONRK(;
+1E=1F F
+o=Ld LS
L+ EZH=1<ZH {7t
REIREIREERES
+M=[M [{M
[+ &=[L%] [{=
+o=Lg [«
M+ . =M_]
M+]= M]
M + [= MFE
M + 1= M

M + ZH = MZH
M+{=ML M
M+M=MM MM
M+ &Z]=M% Mg
M + = M M
&+ =& &..
L+]=%>] %D
@+=g

IEI!

Z!
j

ZI+M=%&M &M
Zl+&l=2 4 &%
&l+i=%&]

R+01=%]
%+ 70 =478

L+ (=%

0+ __ =[]
1+D =01
i+ E =&
i+0=0

1+ ZH=(7H
i+ =£(
1+M=M
i+ & =%
i+0="0

DWW E N DEY IS

L
(K&
B

K7+
(X <
(XM
(X%
B

M...
M)

M/
o

M7t
M <
MM
M4

A Z

TWEDYE RO PR R I AN RS DD
e 0w 8RE

3 ERAEEEE

4l

15
ajs
N T

=S85 E

S

full_width_open
full_width_open
full_width_open
full_width_open
full_width_open
full_width_open
full_width_open
full_width_open
other + hyphen

+ + + + + + + +

full width_close
chinese

half width_close
korean
full_width_open
other
non_starter
half_width_open

other + full width_close

other + chinese
other
other korean

other

+ + o+ +

other other

other +

half_width_close

full_width_open

non_starter

other + half_width_open

non_starter + hyphen

non_starter + full width close

non_starter +

non_starter

non_starter +
non_starter +

non_starter +

non_starter +

chinese

+ half_width_close

korean
full_width_open

other

non_starter

non_starter + half_width_open

half_width_open
half_width_open
half_width_open
half_width_open
half_width_open
half_width_open
half_width_open
half_width_open
half_width_open

+
+
+
+
+
+
+
+
+

hyphen

full _width_close
chinese

half width_close
korean
full_width_open
other
non_starter
half_width_open

Chinese, Japanese and Korean, aka CJK

123

124 Chinese, Japanese and Korean, aka CJK

XVI Optimization

quality of code

How good is the MkIV code? Well, as good as | can make it. When you browse the code
you will probably notice differences in coding style and this is a related to the learning
curve. Forinstance the luat-inp module needs some cleanup, for instance hidinglocal
function from users.

Since benchmarking has been done right from the start there is probably not that much
to gain, but who knows. When coding in Lua you should be careful with defining global
variables, since they may override something. In MkIV we don't guarantee that the name
you use forvariable will notbe used atsome point. Therefore, best operate in a dedicated
Lua instance, or operate in userspace.

do
—-— your code
end

If you want to use your data later on, think of working this way (the example is somewhat
silly):

userdatal'your.name'] = userdatal'your.name'] or { }

do
local mydata = userdatal'your.name']

mydata.data = {}
local function foo() return 'bar' end

function mydata.dothis()
mydata[foo] = foo()
end

end

In this case you can always access your user data while temporary variables are hidden.
The userdata table is predefined. Asis thirddata for modules that you may write. Of
course this assumes that you create a namespace within these global tables.

A nice test for checking global cluttering is the following:

Optimization 125

for k, v in pairs(_G) do
print(k, v)
end

When you incidentally define global variables like n or stx they will show up here.

clean or dirty

Processing the first 120 pages of this document (16 chapters) takes some 23.5 seconds on
adell Mo (2.3GHZ, 4GB mem, Windows Vista Ultimate). A rough estimate of where Lua
spends its time is:

acticvity sec

input load time 0.114
fonts load time 6.692
mps conversion time 0.004
node processing time 0.832

attribute processingtime 3.376

Fontloading takes some time, which is nu surprise because we load huge Zapfino, Arabic
and cjk fonts and define many instances of them. Some tracing learns that there are some
14.254.041 function calls, of which 13.339.226 concern functions that are called more than
5.000 times. A total of 62.434 function is counted, which is a result of locally defined
ones.

A rough indication of this overhead is given by the following test code:

local a,b,c,d,e,f = 1,2,3,4,5,6

function one (a) local n = 1 end
function three(a,b,c) local n = 1 end
function six (a,b,c,d,e,f) local n = 1 end
for i=1,14254041 do one (a) end
for i=1,14254041 do three(a,b,c) end

for i=1,14254041 do six (a,b,c,d,e,f) end
The runtime for these tests (excluding startup) is:

one argument 1.8 seconds
three arguments 2.0 seconds
six arguments 2.3 seconds

So, the of the total runtime for this document we easily spend a couple of seconds on
function calls, especially in node processing and attribute resolving. Does this mean that

126 Optimization

we need to change the code and follow a more inline approach? Eventually we may op-
timize some code, but for the moment we keep things as readable as possible, and even
then much code is still quite complex. Fontloadingis often constant fora document any-
way, and independent of the number of pages. Time spent on node processing depends
on the script, and often processing intense scripts are typeset in a larger font and since
they are less verbose than latin, this does not really influence the average time spent on
typesetting a page. Attribute handling is probably the most time consuming activity, and
for large documents the time spent on this is large compared to font loading and node
processing. But then, after a few MkIV development cycles the picture may be different.

When we turned on tracing of function calls, if becomes clear where currently the time
is spent in a document like this which demands complex Zapfino contextual analysis as
well as Arabic analysis and feature application (both fonts demand node insertion and
deletion). Of course using color also has a price. Handling weighted and conditional
spacing (new in MkIV) involves just over10.000 calls to the main handler for 120 pages of
thisdocument. Glyph related processing of node lists needs 42.000 calls, and contextual
analysis of OpenType fonts is good for 11.000 calls. Timing Lua related tasks involves 2
times 37.000 calls to the stopwatch. Collapsing utf in the input lines equals the number
of lines: 7700.

However, at the the top of the charts we find calls to attribute related functions. 97.000
calls for handling special effects, overprint, transparency and alike, and another 24.000
calls for combined color and colorspace handling. These calls result in over 6.000 in-
sertions of pdf literals (this number is large because we show Arabic samples with color
based tracing enabled). In case you wonder if the attribute handler can be made more
efficient (we're talking seconds here), the answer is “possibly not”. This action is needed
for each shipped out object and each shipped out page. If we divide the 24.000 (calls)
by 120 (pages) we get 200 calls per page for color processing which is okay if you keep
in mind that we need to recurse in nested horizontal and vertical lists of the completely
made op page.

serialization

When serializing tables, we can end up with very large tables, especially when dealing
with big fonts like ‘arabtype’ or ‘zapfino’. When serializing tables one has to find a com-
promise between speed of writing, effeciency of loading and readability. First we had
(sub)tables like:

boundingbox = {

[1] = 0,
[2] = 0,
[3] = 100,

Optimization 127

[4] = 200
i

I mistakingly assumed that this would generate an indexed table, but at tug 2007 Roberto
lerusalimschy explained to me that this was not that efficient, since this variant boils down
to the following byte code:

1 [1] NEWTABLE 004

2 [2] SETTABLE 0-2-3;10

3 [3] SETTABLE 0-4-3;20

4 [4] SETTABLE 0 -5-6; 3 100

5 [5] SETTABLE 0 -7 -8 ; 4 200

6 (6] SETGLOBAL 0 -1 ; boundingbox
7 [6] RETURN 01

This creates a hashed table. The following variant is better:
boundingbox = { 0, 0, 100, 200 }

This results in:

1 [1] NEWTABLE 040

2 [2] LOADK 1 -2 ; O

3 [3] LOADK 2 -2 ; O

4 [4] LOADK 3 -3 ; 100

5 [6] LOADK 4 -4 ; 200

6 (6] SETLIST 041 ;1

7 (6] SETGLOBAL 0 -1 ; boundingbox
8 (6] RETURN 01

The resulting tables are not only smaller in terms of bytes, but also are less memory hun-
gry when loaded. For readability we write tables with only numbers, strings or boolean
values in an inline-format:

boundingbox = { 0, 0, 100, 200 }

The serialized tables are somewhat smaller, depending on how many subtables are in-
dexed (boundary boxes, lookup sequences, etc.)

normal compact filename
34.055.092 32.403.326 arabtype.tma
1.620.614 1.513.863 Imromanio-italic.tma
1.325.585 1.233.044 Imromanio-regular.tma
1.248.157 1158.903 Imsansio-regular.tma
194.646 153.120 Imtypewriterio-regular.tma

128 Optimization

1.771.678 1.658.461 palatinosanscom-bold.tma
1.695.251 1.584.491 palatinosanscom-regular.tma
13.736.534 13.409.446 zapfinoextraltpro.tma

Since we compile the tables to bytecode, the effects are more spectacular there.

normal compact filename
13.679.038 11.774.106 arabtype.tmc
886.248 754.944 Imromanio-italic.tmc
729.828 466.864 Imromanio-regular.tmc
688.482 441.962 Imsansio-regular.tmc
128.685 95.853 Imtypewriterio-regular.tmc
715.929 582.985 palatinosanscom-bold.tmc
669.942 540.126 palatinosanscom-regular.tmc
1.560.588 1.317.000 zapfinoextraltpro.tmc

Especially when a table is partially indexed and hashed, readability is a bit less than nor-
mal but in practice one will seldom consult such tables in its verbose form.

After going beta, users reported problems with scaling of the the Latin Modern and TgX-Gyre
fonts. The troubles originate in the fact that the OpenType versions of these fonts lack a
design size specification and it happens that the Latin Modern fonts do have design sizes
other than 10 points. Here the power of a flexible TgX engine shows ... we can repair
this when we load the font. In MkIV we can now define patches:

do
local function patch(data,filename)
if data.design_size == 0 then
local ds = (file.basename(filename)) :match(" (%d+)")
if ds then

logs.report("load otf",string.format("patching de-
sign size (%s)",ds))
data.design_size = tonumber(ds) * 10
end
end
end

fonts.otf.enhance.patches[" 1lmroman"] = patch

fonts.otf.enhance.patches[" "1lmsans"] patch

fonts.otf.enhance.patches[" " 1lmmono"] = patch
end

Eventually such code will move to typescripts instead of in the kernel code.

Optimization 129

130 Optimization

XVIlI XML revisioned

under construction

the parser

For quite a while ConTgXt has built-in support for xml processing and at Pragma ADE we
use this extensively. One of the first things | tried to deal with in Lua was xml, and now
that we have LuaTgX up and running it's time to investigate this a bit more. First we'll have
a look at the basic functions, the Lua side of the game.

We load an xml file as follows (the document namespace is predefined in ConTgXt):

\startluacode
document.xml = document.xml or { } -- define namespace
document.xml = xml.load("mk-xml.xml") -- load the file
\stopluacode

Theloaderconstructsatable representing the document structure, including whitespace,
so let's serialize the code and see what shows up:

\startluacode
tex.sprint ("\\starttyping")
xml.serialize(document.xml, tex.sprint)
tex.sprint ("\\stoptyping")

\stopluacode

We can control the wat the serializer deals with the snippets, here we just print back to
TEX

<?xml version='1.0 standalone='yes' 7>

<one>
<two>
<a>alpha

<c>gamma</c>
<d/>
<e>epsilon</e>
</two>
<three>
<some>pdftex</some>
<some>luatex</some>

XML revisioned 131

<some>xetex</some>
</three>
<four>
<more:some name="hans"/>
<more:some name="taco"/>
<more:some name="hartmut"/>
</four>
<five>
<some>metapost</some>
</five>
</one>

We can also pass a third argument:

\startluacode

tex.sprint ("\\starttyping")

xml.serialize(document.xml, tex.sprint, string.upper, string.up-
per)

tex.sprint ("\\stoptyping")
\stopluacode

This returns:

<7xml version='1.0 standalone='yes' 7>

<one>
<two>
<a>ALPHA

<c>GAMMA</c>
<d/>
<e>EPSILON</e>
</two>
<three>
<some>PDFTEX</some>
<some>LUATEX</some>
<some>XETEX</some>
</three>
<four>
<more:some name="HANS"/>
<more:some name="TACO"/>
<more:some name="HARTMUT"/>
</four>
<five>

132 XML revisioned

<some>METAPOST</some>
</five>
</one>

This already gives us a rather basic way to manipulate documents and this method is even
not that slow because we bypass TgX reading from file.

\startluacode
document.str = "<1> <w>hello</w> <w>world</w> </1>"
tex.sprint ("\\starttyping")
xml.serialize(xml.convert (document.str) ,tex.sprint)
tex.sprint ("\\stoptyping")

\stopluacode

Watch the extra print argument, we need this because otherwise the verbatim mode will
not work out well.

<1> <w>hello</w> <w>world</w> </1>
An optional second argument of the converter determines if we deal with aroot element.

\startluacode
tex.sprint ("\\starttyping")
xml.serialize(xml.convert (document.str,false),tex.sprint)
tex.sprint ("\\stoptyping")

\stopluacode

Now we get this:
<1> <w>hello</w> <w>world</w> </1>
You can save a (manipulated) xml table with the command:

\startluacode
xml .save (document.xml,"newfile.xml")
\stopluacode

These examples show that you can manipulate files from within your document. If you
want to convert the table to just a string, you can use xml.tostring. Actually, this
method is automatically used for occasions where Lua wants to print an xml table or
wants to join string snippets.

The reason why | wrote the xml parser is that we need it in the utilities (so it has to pro-
vide access to the content of elements) as well as in the text processing (so it needs to
provide some manipulation features). To serve both we have implemented a subset of
what standard xml tools qualify as path based searching.

XML revisioned 133

\startluacode

xml.sprint(xml.first(document.xml, "/one/three/some"))

\stopluacode

The result of this snippet is the content of the first element that matches the specification:
‘<some>pdftex</some>’. As you can see, this comes out rather verbose. The reason for
this is that we need to enter xml mode in order to get such a snippet interpreted.

Below we give a few more variants, this time we use a generic filter:

\startluacode
xml.sprint(xml.filter (document.
\stopluacode

result: <some>pdftex</some>

\startluacode
xml.sprint(xml.filter (document.
\stopluacode

result: <some>pdftex</some>

\startluacode
xml.sprint(xml.filter (document.
\stopluacode

result: <some>pdftex</some>

\startluacode
xml.sprint(xml.filter (document.
\stopluacode

result: <some>xetex</some>

\startluacode
xml.sprint(xml.filter (document.
\stopluacode

result: pdftexluatexxetex

\startluacode
xml.sprint(xml.filter (document.
\stopluacode

result: luatex

134 XML revisioned

xml ,

xml ,

xml ,

xml ,

xml ,

xml ,

"/one/three/some"))

"/one/three/some/first()"))

"/one/three/some[1]1"))

"/one/three/some[-1]"))

"/one/three/some/texts()"))

"/one/three/some[2] /text()"))

The next lines shows some more variants. There are more than these and we will extend
the repertoire over time. If needed you can define additional handlers.

performance

Before we continue with more examples, a few remarks about the performance. The
first version of the parser was an enhanced version of the one presented in the Lua book:
supportfor namespaces, processing instructions, comments, cdata and doctype, remap-
ping and a few more things. When playing with the parser | was quite satisfied about the
performance. However, when | started experimenting with 40 megabyte files, the pre-
processing (needed for the special elements) started to become more noticeable. For
smaller files its 40% overhead is not that disturbing, but for large files . . .

The current version uses Ipeg. We follow the same approach as before, stack and top
and such but this time parsing is about twice as fast which is mostly due to the fact that
we don't have to prepare the stream for cdata, doctype etc. Loadingthe mentioned large
file took 12.5 seconds (1.5 for file io and the rest for tree building) on my laptop (a 2.3 Ghz
Core Duo running Windows Vista). With the Ipeg implementation we got that down to
less 7.3 seconds. Loading the 14 interface definition files (2.6 meg) went down from 1.05
seconds to 0.55 seconds. Namespace related issues take some 10% of this.

patterns

We will not implement complete xpath functionality, but only the features that make
sense for documents that are well structured and needs to be typeset. In addition we
(will) implement text manipulation functions. Of course speed is also a consideration
when implementing such mechanisms.

pattern supported comment
a * not anchored
la * not anchored,negated
a/b * anchored on preceding
/a/b * anchored (current root)
~a/c * anchored (current root)
~~/a/c todo anchored (document root)
a/*/b * one wildcard
a//b * many wildcards
a/**/b * many wildcards

* ignored self
.. * parent
a[5] * index upwards
a[-5] * index downwards

XML revisioned 135

a[position()=5] maybe

alfirst()] maybe

allast()] maybe

(blcld) * alternates (one of)
blcld * alternates (one of)
(blcld) * not one of
a/(blcld)/e/f * anchored alternates
(c/dle) notlikely nested subpaths
a/b[@bla] * any value of
a/b/@bla * any value of
a/b[@bla="'oeps'] * equals value
a/b[@bla=="'oeps'] * equals value
a/b[@bla<>'oeps'] * different value
a/b[@bla!="oeps'] * different value
..... /attribute(id) *

..... /attributes() *

..... /text () *

..... /texts () *

..... /first () *

..... /last () *

..... /index (n) *

..... /position(n) *

root:: *

parent:: *

child:: *

ancestor:: *
preceding-sibling:: not soon
following-sibling:: not soon
preceding-sibling-of-self:: notsoon
following-sibling-or-self:: notsoon

descendent:: not soon

preceding:: not soon

following:: notsoon

self::node() not soon

id("tag") notsoon

node () not soon

This list shows that it is also possible to ask for more matches at once. Namespaces are
supported (including a wildcard) and there are mechanisms for namespace remapping.

\startluacode
tex.sprint(xml.join(xml.collect_texts(

136 XML revisioned

document.xml, "/one/(three|five)/some"
)’ I’ l, 1 and l))
\stopluacode

We get: ‘pdftex, luatex, xetex and metapost’.
There a several helper functions, like xm1 . count which in this case returns 4.

\startluacode
tex.sprint (xml.count (document.xml,"/one/(three|five)/some"))
\stopluacode

Functions like this gives the opportunity to loop over lists of elements by index.

manipulations

We can manipulate elements too. The next code will add some elements at specific lo-
cations.

\startluacode
xml.before(document.xml,"/one/three/some", "<be>okay</be>")
xml.after (document.xml,"/one/three/some","<af>okay</af>")
tex.sprint ("\\starttyping")
xml.serialize_path(document.xml,"/one/three",tex.sprint)
tex.sprint ("\\stoptyping")

\stopluacode

And indeed, we suddenly have a couple of ‘okay’s there:

<three>
<be>okay</be><some>pdftex</some><af>okay</af>
<be>okay</be><some>luatex</some><af>okay</af>
<be>okay</be><some>xetex</some><af>okay</af>
</three>

Of course wel can also delete elements:

\startluacode
xml.delete(document.xml,"/one/three/some")
xml.delete(document.xml,"/one/three/af")
tex.sprint ("\\starttyping")
xml.serialize_path(document.xml,"/one/three",tex.sprint)
tex.sprint ("\\stoptyping")

\stopluacode

XML revisioned 137

Now we have:

<three>
<be>okay</be>
<be>okay</be>
<be>okay</be>
</three>

Replacing an element is also possible. The replacement can be a table (representing
elements) or a string which is then converted into a table first.

\startluacode
xml .replace(document.xml,"/one/three/be","<mid>done</mid>")
tex.sprint ("\\starttyping")
xml.serialize_path(document.xml,"/one/three",tex.sprint)
tex.sprint ("\\stoptyping")

\stopluacode

And indeed we get:

<three>
<mid>done</mid>
<mid>done</mid>
<mid>done</mid>
</three>

These are just a few features of the library. | will add some more (rather) generic manip-
ulaters and extend the functionality of the existing ones. Also, there will be a few manip-
ulation functions that come in handy when preparing texts for processing with TeX (most
of the xml that | deal with is rather dirty and needs some cleanup).

streaming trees

Eventually we will provies series of convenient macros that will provide an alternative for
most of the Mkll code. In Mkl we have a streaming parser, which boils down to attaching
macros to elements. This includes amechanism for saving an restoring data, but this is not
always convenient because one also has to intercept elements that needs to be hidden.

In MkIV we do things different. First we load the complete document in memory (a Lua
table). Then we flush the elements that we want to process. We can associate setups
with elements using the filters mentioned before. We can either use TgX or use Lua to
manipulate content. Instead if a streaming parser we now have a mixture of streaming
and tree manipulation available. Interesting is that the xml loader is pretty fast and piping
data to TX is also efficient. Since we no longer need to manipulate the elements in TgX

138 XML revisioned

we gain processing time too, so in practice we have now much faster xml processing
available.

To give you an idea we show a few commands:
\xmlload {main}{mk-xml.xml}

So that we can do things like (there are and will be a few more):

command arguments result
\xmlfirst {main} {/one/three/some} <some>pdftex</some>
\xmllast {main} {/one/three/some} <some>xetex</some>

\xmlindex {main} {/one/three/some} {2} <some>luatex</some>

There isaset ofabout 30 commands that operates on the tree: loading, flushing, filtering,
associating setups and code in modules to elements. For instance when one uses so
called cals—tables, the processing is automatically activates when the namespace can be
resolved. Processing is collected in setups and those registered are these are processed
after loading the tree. In the following example we register a handler for content that
needs to end up bold.

\startxmlsetups xml:mysetups
\xmlsetsetup{\xmldocument}{bold|bf}{xml:handlebold}
\stopxmlsetups

\xmlregistersetup{xml :mysetups}

\startxmlsetups xml:handlebold
\dontleavehmode
\bgroup
\bf
\xmlflush{#1}
\egroup
\stopxmlsetups

In this example #1 represents the root of the subtree. Say that we want to process an
index entry which is coded as follows:

<index>
<entry>whatever</entry>
<key>whatever</key>
</index>

We register an additional handler (here the * is a shortcut for using the element's tag as
setup name):

XML revisioned 139

\startxmlsetups xml:mysetups
\xmlsetsetup{\xmldocument}{bold|bf}{xml:handlebold}
\xmlsetsetup{\xmldocument}{index}{*}

\stopxmlsetups

\xmlregistersetup{xml :mysetups}

\startxmlsetups index
\index [\xmlfirst{#1}{key}]{\xmlfirst{#1}{entry}}
\stopxmlsetups

In practice MkIV definitions are more compact than the comparable Mkll ones, espe-
cially for more complex constructs (tables and such).

\defineXMLenvironment
[index]
{\bgroup
\defineXMLsave [key]%
\defineXMLsave [entry]}
{\index [\XMLflush{key}] {\XMLflush{entry}}’
\egroup}

This looks compact, but keep in mind that we also need to get rid of spurry spaces and
when the code grows, we usually use setups to separate the definition from the code.
In any case, the Mkll solution involves a few definitions as well as saving the content of
elements. This is often much more costly than the MkIV method where we only locate
and flush content. Of course the document is stored in memory, but that happens pretty
fast: storing the 14 files (2 per interface) that define the ConTgXt user interface takes .85
seconds on a 2.3 Ghz Core Duo (Windows Vista) which is not that bad if you take into
accountthat we're talking of 2.7 megabytes of highly structured data (many elements and
attributes, not that much text). Loading one of these files using Mkll code (for storing
elements) takes many more seconds.

| didn't do extensive speed tests yet but for normal streamed processing of simple doc-
uments the penalty of loading the tree can be neglected. When comparing traditional
Mkl code like:

\defineXMLargument [title] [id=] {\subject[\XMLop{at}]}

\defineXMLenvironment [p] {} {\par}
\starttext

\processXMLfilegrouped{testspeed.xml}
\stoptext

140 XML revisioned

with its MkIV counterpart:

\startxmlsetups document
\xmlsetsetup\xmldocument{title|p}{*}
\stopxmlsetups

\xmlregistersetup{document}

\startxmlsetups title
\section[\xmlatt{#1}{id}]{\xmlcontent{#1}{/}}
\stopxmlsetups

\startxmlsetups p
\xmlflush{#1}\endgraf
\stopxmlsetups

\starttext
\processXMLfilegrouped{testspeed.xml}
\stoptext

I found that processing a one megabyte file with some 400 sections
takes the same runtime for both approaches. However, as soon as more
complex manipulations enter the game the \MKIV\ method starts tak-
ing

less time. Think of the manipulations needed for \MATHML\ or convert-
ing

tables into something that \CONTEXT\ can handle. Also, when we deal
with documents where we need to ignore large portions of shuffle con-
tent

around, the traditional method also has to store data in memory and
in

that case \MKII\ code always loses from \MKIV\ code. 0Of course any
speed

we gain in handling \XML\ is lost on processing complex fonts and
attributes but there we gain in quality.

Another advantage of the MkIV mechanisms is that we suddenly have so called fully ex-
pandable xml handling. All manipulations take place in Lua and there is no interfering
code at the TpX end.

examples

For the path freaks we now show what patterns lead to. For this we will use the following
xml data:

XML revisioned 141

<?xml version='1.0' 7>
<a>
<?what is this?>

<c n='x'>cl</c><d>d1

<c n='y'>c2</c><d>d2</d>

<?what is that?>
<c><d>d3</d></c>
<c n='y'><d>d4</d></c>
<c><d>db</d></c>

Here come the examples:

a/b/c
<c n="x">cl1</c>
<c n="y">c2</c>

/a/b/c
<c n="x">cl1</c>
<c n="y">c2</c>

b/c
<c n="x">cl1</c>
<c n="y">c2</c>

C
<c n="x">c1</c>
<c n="y">c2</c>
<c><d>d3</d></c>
<c n="y"><d>d4</d></c>
<c><d>db</d></c>

a/*/c
<c n="x">c1</c>
<c n="y">c2</c>

a/*x/c
<c n="x">c1</c>

142 XML revisioned

<c n="y">c2</c>

a//c

<c><d>d3</d></c>

<c n="y"><d>d4</d></c>
<c><d>db</d></c>

a/*/*/c

no match

x/c

<c><d>d3</d></c>

<c n="y"><d>d4</d></c>
<c><d>db</d></c>

*k/c

<c n="x">c1</c>

<c n="y">c2</c>
<c><d>d3</d></c>

<c n="y"><d>d4</d></c>
<c><d>db</d></c>

a/../*x/c
<c><d>d3</d></c>

<c n="y"><d>d4</d></c>
<c><d>db</d></c>

a/../c

no match

c[@n="x"]
<c n="x">cl1</c>

c[@n]

<c n="x">c1</c>

<c n="y">c2</c>
<c><d>d3</d></c>

<c n="y"><d>d4</d></c>
<c><d>d5</d></c>

c[@n="y']
<c n="y">c2</c>
<c n="y"><d>d4</d></c>

cl1]

<c n="x">c1</c>

XML revisioned

143

<c n="y">c2</c>
<c><d>d3</d></c>

b/c[1]
<c n="x">cli1</c>
<c n="y">c2</c>

a/c[1]
<c><d>d3</d></c>

a/c[-1]
<c><d>db</d></c>

cl1]

<c n="x">cl1</c>
<c n="y">c2</c>
<c><d>d3</d></c>

c[-1]
<c><d>db</d></c>

pi::

<?xml version='1.

<?what is this?>
<?what is that?>

pi::what

<?what is this?>
<?what is that?>

144 XML revisioned

0)

>

XVII Breaking apart

[todo: mention changes to hyphenchar etc]

Because the long term objective is to have control over all aspects of the typesetting,
quite some effort went into opening up one of the cornerstones of TgX: breaking para-
graphs into lines. And because this is closely related to hyphenating words, this effort
also meant that we had to deal with ligature building and kerning.

This is best explained with an example. Imagine that we have the following sentence'

We imagined itwas being ground down smallerand smaller, into a kind of powder.
And we realized that smallerand smaller could lead to bigger and bigger problems.

With the current language settings for US English this can be hyphenated as follows:

We imag-ined it was be-ing ground down smaller and smaller, into a kind of pow-
der. And we re-al-ized that smaller and smaller could lead to big-ger and big-ger
prob-lems.

So, when breaking a paragraph into lines, TgX has a few options, but here actually not that
many. If we permits two character snippets, we can get:

We imag-ined it was be-ing ground down small-er and small-er, in-to a kind of
pow-der. And we re-al-ized that small-er and small-er could lead to big-ger and
big-ger prob-lems.

If we revert to UK English, we get:

Weima-gined itwas being ground down smal-lerand smal-ler, into a kind of powder.
And we real-ized that smal-lerand smal-ler could lead to big-ger and big-ger prob-
lems.

or, more tolerant,

We ima-gined itwas being ground down smal-lerand smal-ler, into akind of powder.
And we real-ized that smal-lerand smal-ler could lead to big-ger and big-ger prob-
lems.

or with Dutch patterns:

We ima-gi-ned it was being ground down smal-ler and smal-ler, in-to a kind of
pow-der. And we re-a-li-zed that smal-ler and smal-ler could lead to big-ger and

big-ger pro-blems.

The World Without Us, Alan Weisman; a quote from Richard Thomson in chapter: Polymers are Forever.

Breaking apart 145

The code in traditional TgX that deals with hyphenation and linebreaks is rather interwo-
ven. There is arelationship between the font encoding and the way patterns are encodes.
A few years after TEX was written, support for multiple languages was added, which re-
sulted in a mix of (kind of global) language settings (no nodes) and language nodes in the
node lists. Traditionally it roughly works as follows:

e TheinputWe imagined it is tokenized and turned into glyph nodes. If non ascii
characters are used (like pre composed accented characters) there may be a transla-
tion step: macros or active characters can insert \char commands or map onto other
characters, for instance input byte 123 can become byte 198 which in turn ends up as
areference in a glyph node to a font slot. Whatever method is used to go from input
to glyph node, eventually we have a reference to a position in a font. Unfortunately
we had only 256 such slots per font.

e When it's time to break a paragraph into lines, traditional TeX walks over the list, re-
construct words and inserts hyphenation points. In the process, inter-character kerns
that are already injected need to be removed and reinserted, and ligatures have to
be decomposed and recomposed. The magic of hyphenation is controlled by dis-
cretionary nodes. These specify what to do when a word is hyphenated. Take for
instance the Dutch word effe which hyphenated becomes ef-fe so the £f either
stays, oris splitinto - and f.

e Becauseaglyphnodeisboundto afont, thereis a relationship with the fontencoding.
Because there is no one 8-bit encoding that suits all languages, we may end up with
several instances of a font in one document (used for different languages) and each
when we switch language and/orfont, we also have to enable a suitable set of patterns
(in a matching encoding).

You can imagine that this may lead to moderately complex mechanisms in macro pack-
ages. For instance, in ConTgXt, to each language multiple font encodings can be bound
and a switch of fonts (with related encoding) also results in a switch to a suitable set of
patterns. But in MkIV things are done different.

First of all, we got rid of font encodings by exclusively using Unicode. We already were
using utf encoded patterns (so that we could load them under different font encodings)
so less patterns had to be loaded per language. That happened even before the LuaTgX
development arrived at hyphenation.

Before that effort started, Taco and | already played a bit with alternative hyphenation
methods. For instance, we took large word lists with hyphenation points inserted. Taco
wrote aloader (Lua could not handle the large tables as function return value) and I made
some hyphenation code in Lua. Surprisingly we found out that it was pretty efficient,
although we didn't have the weighted hyphenation points that patterns may provide.
Basically we simulated the \hyphenation command.

146 Breaking apart

While we went back to fonts, Taco's college Nanning wrote the first version of a new hy-
phenation storage mechanism, so when about halfayear later we were ready to deal with
the linebreak mechanisms, one of the key components was more or less ready. Where
fonts forced me to write quite some Lua code (still not finished), the new hyphenation
mechanisms could be supported rather easy, if only because the framework was already
kind of present (written during the experiments). Even better, when splitting the old code
into Mkll and new MkIV code, | could do most housekeeping in Lua, and only needed
a minimal amount of TX interfacing (partly redundant because of the shared interface).
The new mechanism also was no longer bound to the format, which means that we could
postpone loading of the patterns to runtime. Instead of the still supported traditional
loading of patterns and exceptions, we load them under Lua control. This gave me yet
another nice excercise in using 1peg (Lua's string parser).

With a new pattern loader in place, Taco started separating the hyphenation, ligature
building and kerning. Each stage now has its own callback and each stage has an associ-
ated Lua function, so that one can create a different order of execution or integrate it in
other node parsing activities, most noticeably the handling of OpenType features.

When | was trying to integrate this into the already existing node processing sequences,
some nasty tricks were needed in order to feed the hyphenation function. At that mo-
ment it was still partly modelled after the traditional TgX way, which boiled down to the
following. As soon as the hyphenation function is invoked, it needs to know what the
current language is. This information is not stored in the node list, only mid paragraph
language switched are stored. Due to the fact that much information in TgX is global (well,
in LuaTgX less and less) this complicates matters. Because in MkIV hyphenation, ligature
building and kerning are done differently (dus to OpenType) we used the hyphenation
callback to collect the language parameters so that we could use them when we called
the hyphenation function later. This can definetely be qualified as an ugly hack.

Before we discuss how this was solved, we summarize the state of affairs. In LuaTpX we
now have a sequence of callbacks related to paragraph building and in between not
much happens any more.

hyphenation

ligaturing

kerning

preparing linebreaking
linebreaking

finishing linebreaking

Before we only had:

e preparing linebreaking

Breaking apart 147

and this is where MkIV hooks in ist code. The first three are disabled by associating them
with dummy functions. I'm still not sure how the last two will fit it, especially because
there is some interplay between OpenType features and linebreaking, like alternative
glyphs at the end of the line. Because the hz and protruding mechanisms also will be
supported we may as well end up with a mechanism for alternative glyphs built into the
linebreak algorithm.

Back to the current situation. What made matters even more complicated was the fact
that we need to manipulate node lists while building horizontal material (hpacking) as
well as for paragraphs (pre-linebreaking). Compare the following two situations. In the
first case the hbox is packaged and hyphenation is not needed.

text \hbox {text} text

However, when we unbox the content, hyphenation needs to be applied.
\setboxO=\hbox{text} text \unhboxO\ text

[l need to check the next]

Traditional TEX does not look at all potential hyphenation points, but only around places
that have a high probability as line-end. LuaTgX just hyphenates the whole list, although
the function can be used selectively over a range, in MklV we see no reason for this and
hyphenate whole lists.

The new hyphenation routine not only operates on the whole list, but also can be made
transparent for uppercase characters. Because we assume Unicode lowercase codes are
no longer stored with the patterns (an e-TgX extension). The usual left- and righthyphen-
min control is still there. The first word of a paragraph is no longer ignored in the process.

Because the stages are separated now, the opportunity was there to separate between
characters and glyphs. As with traditional TgX, only characters are taken into account
when hyphenating, so how do we distinguish between the two? The subtype (a prop-
erty of each node) already registered if we were dealing with a ligature or not. Taco and
Nanning had decided to treat the subtype as a bitset and after a bit of testing ans skyping
we came to the conclusion that we needed an easy way to tag a glyph node as being ‘al-
ready processed’. Keep in mind that as in the unhboxed example, the unhboxed content
is already treated (hpack callback). If you wonder why we have these two moments of
treatment think of this: if you put something in a box and want to know its dimensions,
all font related features need to be applied. If the box is inserted as is, it can be recog-
nized (a hlist or vlist node) and safely skipped in the prelinebreak handling. However,
when it is unhboxed, we want to avoid reprocessing. Normally reprocessing will be pre-
vented because the glyph nodes are mixed with kerns and ligatures are already built, but
we can best play safe. Once we're done with processing a list (which can involve many
passes, depending on what treatment is needed) we can tag the glyphs nodes as ‘done’

148 Breaking apart

by adding 256 to the subtype. We can then test on this property in callbacks while at the
same time built-in functions like those responsible for hyphenation ignore this high bit.

The transition from character to glyph is also done by changing bits in the subtype. At
some point we need to set the subtype so that it reflects the node being a glyph, ligature
or other special type (there are a few more types inherited from omega). | know that this
all sounds complicated, butin MkIV we now roughly do the following (of course this may
and probably will change):

attribute driven manipulations (for instance case change)

language driven manipulations (spell checking, hyphenation)

font driven treatments, mostly features (ligature building, kerning)

turn characters into glyphs (so that they will not be hyphenated again)

normal ligaturing routine (currently still needed for not open type fonts, may become

obsolete)

e normal kerning routine (currently still needed for not open type fonts, may become
obsolete)

e attribute driven manipulations (special spacing and kerning)

When no callbacks are used, turning characters into glyphs happens automatically be-
hind the screens. When using callbacks (as in MkIV) this needs to be done explicitly (but
there is a helper function for this).

So, by now LuaTgX can determine which glyph nodes play a role in hyphenation but still
we have this ‘what language are we in’ problem. As usual in the development of LuaTgX,
these fundamental changes took place in a setting where Taco and | are in a persistent
state of Skyping, and it did not take much time to decide that in order to make the call-
backs usable, it made much sense to moving the language related information to the
glyph node as well, i.e. the number of the language object (patterns and exceptions), the
left and right min values, and the boolean that tells how to treat uppercase characters.
Each is now accessible in the usual way (by key). The penalty in additional memory is
zero because it's stored along with the subtype bitset. By going this route, the ugly hack
mentioned before could be removed as well.

In the process of finalizing the code, discretionary nodes got a slightly different imple-
mentation. Originally they were organized as follows (ff is a ligature):

con-text == [c] [o] (pre=n-,post=,replace=1) [n] [t] [e] [x] [t]
effe == [e] (pre=f-,post=f,replace=1) [ff] [e]

So, a discretionaty node contained information about what to put at the end of the bro-
ken line and what to putin front of the next line, as well as the number of following nodes
in the list to skip when such a linebreak occured. Because this leads to rather messy code
especially when ligatures are involved, so the decision was made to change the replace-
ment counter into a node list holding those (optionally) to be replaced nodes.

Breaking apart 149

con-text == [c] [o] (pre=n-,post=,replace=n) [t] [e] [x] [t]
effe == [e] (pre=f-,post=f,replace=£ff) [e]

This is much cleaner, but a consequence of this change was that all MklV node manipu-
lation code written so far had to be reviewed.

Of course we need to spend a few words on performance. We keep doing performance
tests but currently we only remove bottlenecks that bother us. Later in the development
optimization will tke place in the code. One reason is that the code changes, another
reason is that large portions of Pascal code is turned into C. Because integrating these
changes (apart from preparations) took place within a few weeks, we could reasonably
well compare the old and the new hyphenation mechanisms using our (evolving) manu-
als and surprisingly the performance was certainly not worse than before.

150 Breaking apart

XIX Collecting garbage

We usethemk . tex documentfortestingand because it keeps track of how LuaTgX evolves.
As a result it has some uncommon characteristics. For instance, you can see increments
in memory usage at points where we load fonts: the chapters on Zapfino, Arabic and CJK
(unfinished). This memory is not freed because the font memory is used permanently. In
the following graphic, the red line is the memory consumption of LuaTgX for the current
version of mk . tex. The blue line is the runtime per page.

=M: - MA AAsa,

luastate_bytes min:54234233, max:504808517, pages:326

Atthe moment of writing this Taco has optimized the LuaTgX code base and | have added
dynamic feature support to the MklV and optimized much of the critical Lua code. Atthe
time of writing this (December 23, 2007), mk . tex counted 142 pages. Our rather aggres-
sive optimizations brought down runtime from about 29 seconds to under 16 seconds.
By sharing as much font data as possible at the Lua end (at the cost of a more complex
implementation) the memory consumption of huge fonts was brought down to a level
where a somewhat ‘older’ computer with 512 MB memory could also cope with MkIV.
Keep in mind that some fonts are just real big. Eventually we may decide to use a more
compacttable modelfor passing OpenType fonts to Lua, but this will not happen in 2007.

The following tests show when Lua's garbage collector becomes active. The blue spike
shows that some extra time is spent on this initially. After that garbage more garbage is
collected, which makes the time spent per page slightly higher.

\usemodule[timing] \starttext \dorecurse{2000}{
\input tufte \par \input tufte \par \input tufte \page
} \stoptext

Collecting garbage 151

luastate_bytes min:37009927, max:87755930, pages:2000

The maximum memory footprint is somewhat misleading because Lua reserves more
than needed. As discussed in an earlier chapter, itis possible to tweak to control memory
management somewhat, but eventually we decided that it does not make much sense
to divert from the default settings.

\usemodule [timing] \starttext \dorecurse{2000}{
\input tufte \par \input tufte \par \input tufte \par
} \stoptext

luastate_bytes min:36884954, max:86480013, pages:1385

The last example of this set does notload files, but stores the textin a macro. This is faster,
although not that mich because the operating system caches the file and there is not utf
collapsing needed for this file.

\usemodule [timing] \starttext \dorecurse{2000}{
\tufte \par \tufte \par \tufte \par
} \stoptext

luastate_bytes min:36876892, max:86359763, pages:1385

152 Collecting garbage

There are subtle differences in memory usage between the examples and eventually test
like these will permit us to optimize the code even further. For the record: the first test
runs in 39.5 seconds, the second on in 36.5 seconds and the last one only takes 31.5 sec-
onds (all in batch mode).

Keep in mind that these quotes in tufte . tex are just test samples, and not that realistic
in everyday documents. On the other hand, these tests involve the usual font loading,
node processing, attribute handling etc. They provide a decent baseline.

Another document that we use for testing functionality and performance is the reference
manual. The preliminary beta 2 version gives the following statistics.

The previous graphic shows the statistics of a run with runtime MetaPost graphics en-
abled. This means that, because each pagenumber comes with a graphic, for each page
MetaPost is called. The speed of this call is heavily influenced by the MetaPost startup
time, which in turn (in a windows platform) is influences by the initialization time of the
kpse library. Technically the call time can near zero but this demands sharing libraries and
databases. Anyhow, we're moving towards an embedded MetaPost library anyway, and
the next graphic shows what will happen then. Here we run ConTgXtin delayed MetaPost
mode: graphics are collected and processed between runs. Where the runtime variant
takes some 45 seconds processing time, the intermediate versions takes 15.

In the mk.tex document we use Type1 fonts for the main body of the text and load
some (huge) OpenType fonts later on. Here we use OpenType fonts exclusively and since
ConTgXt loads fonts only when needed, you see several spikes in the time per page bars
and memory consumption quickly becomes stable. Interesting is that contrary to the
tufte.tex samples, memory usage is quite stable. Here we don't have a memory saw-
tooth and no garbage collection spikes.

The previous graphics combine Lua memory consumption with time spent per page. The
following graphics show variants of this. The graphics concern this document (mk . tex).

Again, the blue lines represent the runtime per page.

e — -l JA AN
cs_count min:30774, max:35143, pages:326

Collecting garbage 153

AA

M k

dyn_used min:478158, max:554800, pages:326
elapsed_time min:0, max:8.237, pages:326

A A Paron, ol M v,V WV E——
luabytecode_bytes min:11008, max:11008, pages:326

L

N\ MA AA
luastate_bytes min:54234233, max:504808517, pages:326
. ttDmedio, o). MA AAM e
max_buf_stack min:340, max:2261, pages:326

154 Collecting garbage

M k

obj_ptr min:8, max:1141, pages:326
A e agaite i\ JA AN
pdf_mem_ptr min:1, max:1, pages:326
A S A ol JA AA A
pdf_mem_size min:10000, max:10000, pages:326
A A AP o\ MA AN
pdf_os_cntr min:0, max:7, pages:326
= ol MA VUV
pool_ptr min:509733, max:608766, pages:326

Collecting garbage 155

g

= —— rem—ww o\ MA A
str_ptr min:2131299, max:2136226, pages:326

In LuaTEX node memory management is rewritten. Contrary to what you may expect,
node memory consumption is not that large. Pages seldom contain more than 5000
nodes, although extensive use of attributes can easily duplicate this. Node usage in this
documents is as follows.

A o A sj.._ \ .‘.L LA~ I\A L-“ e M acttmmtnd, b\

attribute min:15, max:13502, pages:326

A wehas a L A‘jw(A- L.'L‘ JL-L_A

attribute_list min:8, max:3420, pages:326

dir min:3, max:85, pages:326

156 Collecting garbage

b AWL N \M

disc min:1, max:294, pages:326

glue min:1, max:3891, pages:326

A A A

glue_spec min:18, max:2990, pages:326

|
glyph min:1, max:3689, pages:326

hlist min:4, max:2201, pages:326

Collecting garbage 157

A A ‘m AA M A
if stack min:0, max:13, pages:326

Waa WU TR l..ul Y

kern min:1, max:1169, pages:326

late_lua min:1, max:142, pages:326
local_par min:0, max:337, pages:326
mark min:0, max:33, pages:326

158 Collecting garbage

math min:0, max:112, pages:326

A e agaite i\ JA AN
nested_list min:1, max:1, pages:326
A S A ol JA AA A
pdf_annot min:1, max:1, pages:326
A AN ol JA AN
pdf_dest min:1, max:1, pages:326

M ol MA

pdf_literal min:7, max:634, pages:326

Collecting garbage 159

Ah "~ aDmadlo. 2\ M

pdf_refximage min:0, max:7, pages:326
pdf_save_pos min:0, max:141, pages:326
penalty min:1, max:661, pages:326

a LA

rule min:2, max:948, pages:326
A NV YN o\ MA AAM e
temp min:0, max:4, pages:326

160 Collecting garbage

h""‘ v - A AN,

vlist min:5, max:568, pages:326

T d

If node memory usage stays high, i.e. is notreclaimed, this can be an indication ofa mem-
ory leak. In the December 2007 beta version there is such a leak in math subformulas,
something that will be resolved when math node processing is opened up. The current
MKIV code cleans up most of its temporary data. We do so, because it permits us to keep
an eye on unwanted memory leaks. When writing this chapter, some of the peaks in the
graphics coincided with peaks in the runtime per page, which is no surprise.

If you want to run such tests yourself, you need to load a module at startup:
\usemodule[timing]
The graphics can be generated with:

\def\ShowUsage {optional filename}
\def\ShowNamedUsage {optional filename}{red graphic}{blue graphic}
\def\ShowMemoryUsage{optional filename}
\def\ShowNodeUsage {optional filename}

(This interface may change.)

Collecting garbage 161

162 Collecting garbage

XX Nice to know

XX.I Tricky ligatures

Gettingthe 1.06 release of Latin Modern out in the wild took some discussion and testing.
Not only were the names (internal names as well as file names) changed in such a way that
multiple paplications could deal with it, but also some more advanced ligature trickery
was added.

\definefontfeature
[ijtest]
[mode=node,
script=latn,language=nld,strategy=3,
liga=yes,kern=yes]

\definefont
[ijfont]
[name:1lmromanlOregular*ijtest at 36pt]

\start \ijfont \setstrut fijn ijsje fiets flink effe\stop

This bit of Dutch shows up as:

fijn ijsje fiets flink effe

Do you see the trick? There are both an ij and an fi ligature, but we need to prevent the
ij ligature in fijn. Of course not all fonts have this feature, which indicated that you can
never depend on it.

XX.Il Herds

A while ago, Duane, Taco and | published the Cow Font. It's non-trivial to cook up a
font made of cows, but of course Mojca Miklavec (who else) wants to typeset something
Slovenian in this font. Now, the problem is thatin MkIV we don't have fallback characters,
or more precisely, we don't make utf characters active and accent composing commands
are mapped onto utf.

This means that nothing will show up when we have no characters in the defined fonts.
Forthe momentwe stick to simple virtual fonts but because we can use node lists in virtual
fonts, in the near future we will cook up a way to create arbitrary fallback characters.

The following example demonstrates how to ‘complete’ a font that misses glyphs.

Nice to know 163

\definefontfeature[coward] [kern=yes,ligatures=yes]
\definefontfeature[cowgirl] [kern=yes,ligatures=yes, compose=yes]

\definefontsynonym [cows] [koeieletters.afm*coward]
\definefontsynonym [herd] [koeieletters.afm*cowgirl]

\blank [3*medium]

\dontleavehmode\hbox{\definedfont [cows sa 5] (&) (8) (2)}

\blank [3*medium]

\dontleavehmode\hbox{\definedfont [herd sa 5] (&) (8) (2)}

\blank [3*medium]

\dontleavehmode\hbox{\definedfont [herd sa 5] (\v{c}) (\v{s}) (\v{z})}

As expected (at least by me) the first line has no compose characters.

00
(EMAMED
EMENR

164 Nice to know

XXI The luafication of TEX and ConTgXt

introduction

Here | will present the current stage of LuaTgX around beta stage 2, and discuss the impact
so far on ConTpXt MkIV that we use as our testbed. I'm writing this at the end of February
2008 as part of the series of regular updates on LuaTgX. As such, this report is part of our
more or less standard test document (mk . tex). More technical details can be found in
the reference manual that comes with LuaTgX. More information on MkIV is available in
the ConTgXt mailing lists, Wiki, and mk . pdf.

Forthose who never heard of LuaTgX: this is a new variant of TEX where several long pend-
ing wishes are fulfilled:

combine the best of all TEX engines

add scripting capabilities

open up the internals to the scripting engine
enhance font support to OpenType

move on to Unicode

integrate MetaPost

There are a few more wishes, like converting the code base to C but these are long term
goals.

The project started a few years ago and is conducted by Taco Hoekwater (Pascal and
C coding, code base management, reference manual), Hartmut Henkel (pdf backend,
experimental features) and Hans Hagen (general overview, Lua and TgX coding, website).
The code development got a boost by a grant of the Oriental TgX project (project lead:
Idris Samawi Hamid) and funding via the tug. The related mplib project by the same team
is also sponsored by several user groups. The very much needed OpenType fonts are also
a user group funded effort: the Latin Modern and TgX Gyre projects (project leads: Jerzy
Ludwichowski, Volker RW Schaa and Hans Hagen), with development (the real work) by:
Bogustaw Jackowski and Janusz Nowacki.

One of our leading principles is that we focus on opening up. This means that we don't
implement solutions (which also saves us many unpleasant and everlasting discussions).
Implementing solutions is up to the user, or more precisely: the macro package writer,
and since there are many solutions possible, each can do it his or her way. In that sense
we follow the footsteps of Don Knuth: we make an extensible tool, you are free to like
it or not, you can take it and extend it where needed, and there is no need to bother us
(unless of course you find bugs or weird side effects). So far this has worked out quite
well and we're confident that we can keep our schedule.

The luafication of TeX and ConTgXt 165

We do our tests of a variant of ConTgXt tagged MkIV, especially meant for LuaTgX, but
LuaTgX itselfis in no way limited to or tuned for ConTgXt. Large chunks of the code written
for MkIV are rather generic and may eventually be packaged as a base system (especially
font handling) so that one can use LuaTgX in rather plain mode. To a large extent MkIV
will be functionally compatible with Mkll, the version meant for traditional TgX, although
it knows how to profit from X3IgX. Of course the expectation is that certain things can be
done better in MkIV than in MkII.

status

By the end of 2007 the second major beta release of LuaTgX was published. In the first
quarter of 2008 Taco would concentrate on mplib, Hartmut would come up with the
first version of the image library while | could continue working on MkIV and start using
LuaTgX in real projects. Of course there is some risk involved in that, but since we have
a rather close loop for critical bug fixes, and because | know how to avoid some dark
corners, the risk was worth taking.

What did we accomplish so far? | can best describe this in relation to how ConTgXt MkIV
evolved and will evolve. Before we do this, it makes sense to spend some words on why
we started working on MkIV in the first place.

When the LuaTgX project started, ConTgXt was about 10 years in the field. | can safely
say that we were still surprised by the fact that what at first sight seems unsolvable in TgX
somehow could always be dealt with. However, some of the solutions were rather tricky.
The code evolved towards a more or less stable state, but sometimes depended on con-
trolled processing. Take for instance backgrounds that can span pages and columns, can
be nested and can have arbitrary shapes. This feature has been present in ConTgXt for
quite a while, but it involves an interplay between TeX and MetaPost. It depends on in-
formation collected in a previous run as well as (at runtime or not) processing of graphics.

This means that by now ConTgXtis not just a bunch of TEX macros, but also closely related
to MetaPost. It also means that processing itself is by now rather controlled by a wrapper,
in the case of Mkll called TiXexec. It may sound complicated, but the fact that we have
implemented workflows that run unattended for many years and involve pretty complex
layouts and graphic manipulations demonstrates that in practice it's not as bad as it may
sound.

With the arrival of LuaTgX we not only have a rigourously updated TeX engine, but also get
MetaPost integrated. Even better, the scripting language Lua is not only used for open-
ing up TeX, but is also used for all kind of management tasks. As a result, the develop-
ment of MkIV not only concerns rewriting whole chunks of ConTgXt, but also results in a
set of new utilities and a rewrite of existing ones. Since dealing with MkIV will demand

166 The luafication of TeX and ConTgXt

some changes in the way users deal with ConTgXt | will discuss some of them first. It also
demonstrates that LuaTgX is more than just TgX.

utilities

There are two main scripts: luatools and mtxrun. The firstone started as areplacement for
kpsewhich but evolved into a base tool for generating (tds) file databases and generating
formats. In MkIV we replace the regular file searching, and therefore we use a different
database model. That's the easy part. More tricky is that we need to bootstrap MkIV into
this alternative mode and when doing so we don't want to use the kpse library because
that would trigger loading of its databases. To discuss the gory details here might cause
users to refrain from using LuaTgX so we stick to a general description.

e When generating a format, we also generate a bootstrap Lua file. This file is compiled
to bytecode and is put alongside the formatfile. The libraries of this bootstrap file are
also embedded in the format.

e When we process a document, we instruct LuaTgX to load this bootstrap file before
loadingthe format. Afterthe formatisloaded, we re-initialize the embedded libraries.
This is needed because at that point more information may be available than at load-
ing time. For instance, some functionality is available only after the format is loaded
and LuaTgX enters the TgX state.

e File databases, formats, bootstrap files, and runtime-generated cached data is keptin
a tds tree specific cache directory. For instance, OpenType font tables are stored on
disk so that next time loading them is faster.

Starting LuaTgX and MkIV is done by luatools. This tool is generic enough to handle other
formats as well, like mptopdf or Plain. When you run this script without argument, you
will see:

version 1.1.1 - 2006+ - PRAGMA ADE / CONTEXT

-—generate generate file database
--variables show configuration variables
-—expansions show expanded variables

--configurations show configuration order
-—expand-braces expand complex variable

-—expand-path expand variable (resolve paths)
--expand-var expand variable (resolve references)
--show-path show path expansion of

--var-value report value of variable
--find-file report file location

--find-path report path of file

The luafication of TeX and ConTgXt 167

--make or —--ini make luatex format

--run or ——-fmt= run luatex format

--luafile=str lua inifile (default is <progname>.lua)
--lualibs=1list libraries to assemble (optional)
--compile assemble and compile lua inifile
--verbose give a bit more info

--minimize optimize lists for format

--all show all found files

--sort sort cached data

-—engine=str target engine

--progname=str format or backend

--pattern=str filter variables

--1lsr use lsr and cnf directly

For the Lua based file searching, luatools can be seen as a replacement for mktexlsr and
kpsewhich and as such it also recognizes some of the kpsewhich flags. The script is self
contained inthe sense thatall needed libraries are embedded. Asaresultno library paths
need to be set and packaged. Of course the script has to be run using LuaTgX itself. The
following commands generate the file databases, generate a ConTgXt MkIV format, and
process a file:

luatools --generate
luatools --make --compile cont-en
luatools —--fmt=cont-en somefile.tex

There is no need to install Luain order to run this script. This is because LuaTgX can act
as such with the advantage that the built-in libraries are available too, for instance the
Lua file system 1fs, the zip file manager zip, the Unicode libary unicode, md5, and of
course some of our own.

luatex alua-enhanced TgX engine
texlua aluaengine enhanced with some libraries
texluac a Lua bytecode compiler enhanced with some libraries

In principle luatex can perform all tasks but because we need to be downward com-
patible with respect to the command line and because we want Lua compatible variants,
you can copy or symlink the two extra variants to the main binary.

The second script, mtxrun, can be seen as a replacement for the Ruby script texmfstart, a
utility whose main task is to launch scripts (or documents or whatever) in a tds tree. The
mtxrun script makes it possible to get away from installing Ruby and as a result a regular
TeX installation can be made independent of scripting tools.

168 The luafication of TeX and ConTgXt

version 1.0.2 - 2007+ - PRAGMA ADE / CONTEXT

--script
—-—eXxecute
—--resolve
--ctxlua
—--locate

--autotree
-—tree=pathtotree
—-—environment=name
--path=runpath
--ifchanged=filename
-—-iftouched=0ld,new

—--make

—-remove
--stubpath=binpath
—--windows

—--unix

--verbose
-—engine=str

——progname=str

-—edit
—--launch (--all)

-—intern

run an mtx script

run a script or program

resolve prefixed arguments

run internally (using preloaded libs)
locate given filename

use texmf tree cf.\ environment settings
use given texmf tree (def: 'setuptex.tmf')
use given (tmf) environment file

go to given path before execution

only execute when given file has changed
only execute when given file has changed

create stubs for (context related) scripts
remove stubs (context related) scripts
paths where stubs wil be written

create windows (mswin) stubs

create unix (linux) stubs

give a bit more info

target engine

format or backend

launch editor with found file
launch files (assume os support)

run script using built-in libraries

This help information gives an impression of what the script does: running other scripts,
either within a certain tds tree or not, and either conditionally or not. Users of ConTgXt
will probably recognize most of the flags. As with texmfstart, arguments with prefixes like
file: will be resolved before being passed to the child process.

The first option, ——script is the most important one and is used like:

mtxrun --script fonts --reload
mtxrun --script fonts --pattern=I1m

In MkIV you can access fonts by filename or by font name, and because we provide sev-
eral names per font you can use this command to see what is possible. Patterns can be
Lua expressions, as demonstrated here:

The luafication of TEX and ConTgXt

169

mtxrun --script font --list --pattern=lmtype.*regular

ImtypewriterlO-capsregular LMTypewriter10-CapsRegular 1lmtypewriter1O-cap

sregular.otf

Imtypewriterl0-regular LMTypewriter10-Regular Imtypewriterl0-reg
ular.otf
lmtypewriterl2-regular LMTypewriterl2-Regular Imtypewriterl2-reg
ular.otf
Imtypewriter8-regular LMTypewriter8-Regular Imtypewriter8-reg-
ular.otf
lmtypewriter9-regular LMTypewriter9-Regular Imtypewriter9-reg-
ular.otf

ImtypewritervarwdlO-regular LMTypewriterVarWdl0-Regular Ilmtypewriter-

varwdlO-regular.otf
Asimple

mtxrun --script fonts
gives:

version 1.0.2 - 2007+ - PRAGMA ADE / CONTEXT | font tools

--reload generate new font database
--list list installed fonts

-—save save open type font in raw table
--pattern=str filter files

--all provide alternatives

In MkIV font names can be prefixed by file: orname: and whenthey are resolved, sev-
eral attempts are made, for instance non-characters are ignored. The ——all flag shows
more variants.

Another example is:
mtxrun --script context --ctx=somesetup somefile.tex

Again, users of TEXexec may recognize part of this and indeed this is its replacement. In-
stead of TEXexec we use a script named mtx-context.lua. Currently we have the fol-
lowing scripts and more will follow:

The babel script is made in cooperation with Thomas Schmitz and can be used to con-
vert babelized Greek files into proper utf. More of such conversions may follow. With
cache you can inspect the content of the MkIV cache and do some cleanup. The chars

170 The luafication of TEX and ConTgXt

script is used to construct some tables that we need in the process of development. As
its name says, check is a script that does some checks, and in particular it tries to figure
out if TgX files are correct. The already mentioned context script is the MkIV replace-
ment of TeXexec, and takes care of multiple runs, preloading project specific files, etc.
The convert script will replace the Ruby script pstopdf.

A rather important script is the already mentioned fonts. Use this one for generating
font name databases (which then permits a more liberal access to fonts) or identifying
installed fonts. The unzip scriptindeed unzips archives. The update script is still some-
what experimental and is one of the building blocks of the ConTgXt minimal installer sys-
tem by Mojca Miklavec and Arthur Reutenauer. This update script synchronizes a local
tree with a repository and keeps an installation as small as possible, which for instance
means: no OpenType fonts for pdfTgX, and no redundant Type1 fonts for LuaTgX and X3TEX.

The (for the moment) last two scripts are watch and web. We use them in (either auto-
mated or not) remote publishing workflows. They evolved out of the eXaMpLe frame-
work which is currently being reimplemented in Lua.

Asyou can see, the LuaTgX project and its ConTeXt companion MkIV project not only deal
with TgX itself but also facilitates managing the workflows. And the next list is just a start.

context controls processing of files by MkIV

babel conversion tools for IXTEX files
cache utilities for managing the cache
chars utilities used for MkIV development

check TgXsyntax checker

convert helperfor some basic graphic conversion
fonts utilities for managing font databases
update tool forinstalling minimal ConTgXt trees
watch hotfolder processing tool

web utilities related to automate workflows

There will be more scripts. These scripts are normally rather small because they hook into
mtxrun which provides the libraries. Of course existing tools remain part of the toolkit.
Take forinstance ctxtools, a Ruby script that converts fontencoded pattern files to generic
utf encoded files.

Those who have followed the development of ConTgXt will notice that we moved from
utilities written in Modula to tools written in Perl. These were later replaced by Ruby
scripts and eventually most of them will be rewritten in Lua.

macros

| will not repeat what is said already in the MkIV related documents, but stick to a sum-
mary of what the impact on ConTgXt is and will be. From this you can deduce what the
possible influence on other macro packages can be.

The luafication of TEX and ConTgXt 171

Opening up TgX started with rewriting all io related activities. Because we wanted to be
able to read from zip files, the web and more, we moved away from the traditional kpse
based file handling. Instead MkIV uses an extensible variant written in Lua. Because we
need to be downward compatible, the code is somewhat messy, but it does the job,
and pretty quickly and efficiently too. Some alternative input media are implemented
and many more can be added. In the beginning | permitted several ways to specify a re-
source but recently a more restrictive url syntax was imposed. Of course the file locating
mechanisms provide the same control as provided by the file readers in MKklI.

An example of reading from a zip file is:

\input zip:///archive.zip?name=blabla.tex
\input zip:///archive.zip?name=/somepath/blabla.tex

In addition one can register files, like:

\usezipfile[archive.zip]
\usezipfile[tex.zip] [texmf-local]
\usezipfile[tex.zip7tree=texmf-locall

The last two variants register a zip file in the tds structure where more specific lookup
rules apply. The files in a registered file are known to the file searching mechanism so
one can give specifications like the following:

\input */blabla.tex
\input */somepath/blabla.tex

In a similar fashion one can use the http, ftp and other protocols. For this we use in-
dependent fetchers that cache data in the MkIV cache. Of course, in more structured
projects, one will seldom use the \input command but use a project structure instead.

Handling of files rather quickly reached a stable state, and we seldom need to visit the
code forfixes. Already after a few years of developing the first code for LuaTgX we reached
a state of ‘'Hm, when did | write this?’. When we have reached a stable state | foresee that
much of the older code will need a cleanup.

Related to reading files is the sometimes messy area of input regimes (file encoding) and
font encoding, which itself relates to dealing with languages. Since LuaTgX is utf-8 based,
we need to deal with file encoding issues in the frontend, and this is what Lua based file
handling does. In practice users of LuaTgX will swiftly switch to utf anyway but we provide
regime control for historic reasons. This time the recoding tables are Lua based and as a
result MkIV has no regime files. In a similar fashion font encoding is gone: there is still
some old code that deals with default fallback characters, but most of the files are gone.
The same will be true for math encoding. All information is now stored in a character
table which is the central point in many subsystems now.

172 The luafication of TX and ConTgXt

Itis interesting to notice that until now users have never asked for support with regards to
input encoding. We can safely assume that they just switched to utf and recoded older
documents. It is good to know that LuaTgX is mostly pdfTgX but also incorporates some
features of Omega. The main reason for this is that the Oriental TEX project needed bidi-
rectional typesetting and there was a preference for this implementation over the one
provided by e-TEX. As aside effectinputtranslation is also present, but since no one seems
to use it, that may as well go away. In MkIV we refrain from input processing as much as
possible and focus on processing the node lists. That way there is no interference be-
tween user data, macro expansion and whatever may lead to the final data that ends up
in the to-be-typeset stream. As said, users seem to be happy to use utf as input, and so
there is hardly any need for manipulations.

Related to processing input is verbatim: a feature that is always somewhat complicated
by the fact that one wants to typeset a manual about TgX in TEX and therefore needs flex-
ible escapes from illustrative as well as real TEX code. In MkIV verbatim as well as all
buffering of data is dealt with in Lua. It took a while to figure out how LuaTgX should deal
with the concept of a line ending, but we got there. Right from the start we made sure
that LuaTgX could deal with collections of catcode settings (those magic states that char-
acters can have). This means that one has complete control at both the TgX and Lua end
over the way characters are dealt with.

In MkIV we also have some pretty printing features, but many languages are still missing.
Cleaning up the premature verbatim code and extending pretty printing is on the agenda
for the end of 2008.

Languages also are handled differently. A major change is that pattern files are no longer
preloaded but read in at runtime. There is still some relation between fonts and lan-
guages, no longer in the encoding but in dealing with OpenType features. Later we will
do a more drastic overhaul (with multiple name schemes and such). There are a few ex-
perimental features, like spell checking.

Because we have been using utf encoded hyphenation patterns for quite some time now,
and because ConTgXt ships with its own files, this transition probably went unnoticed,
apart maybe from a faster format generation and less startup time.

Most of these features started out as an experiment and provided a convenient way to
test the LuaTgX extensions. In MkIV we go quite far in replacing TgX code by Lua, and
how far one goes is a matter of taste and ambition. An example of a recent replacement
is graphic inclusion. This is one of the oldest mechanisms in ConTgXt and it has been
extended many times, for instance by plugins that deal with figure databases (selective
filtering from pdffiles made for this purpose), efficient runtime conversion, color conver-
sion, downsampling and product dependent alternatives.

The luafication of TeX and ConTgXt 173

One can question if a properly working mechanism should be replaced. Not only is
there hardly any speed to gain (after all, not that many graphics are included in docu-
ments), a Lua-TEX mix may even look more complex. However, when an opened-up TgX
keeps evolving at the current pace, this last argument becomes invalid because we can
no longer give that TeXie code to Lua. Also, because most of the graphic inclusion code
deals with locating files and figuring out the best quality variant, we can benefit much
from Lua: file handling is more robust, the code looks cleaner, complex searches are
faster, and eventually we can provide way more clever lookup schemes. So, after all,
switching to Lua here makes sense. A nice side effect is that some of the mentioned plu-
gins now take a few lines of extra code instead of many lines of TgX. At the time of writing
this, the beta version of MkIV has Lua based graphic inclusion.

A disputable area for Luafication is multipass data. Most of that has already been moved
to Luafiles instead of TeX files, and the rest will follow: only tables of contents still use a TeX
auxiliary file. Because at some point we will reimplement the whole section numbering
and cross referencing, we postponed that till later. The move is disputable because in
the end, most data ends up in TX again, which involves some conversion. However,
in Lua we can store and manipulate information much more easily and so we decided
to follow that route. As a start, index information is now kept in Lua tables, sorted on
demand, depending on language needs and such. Positional information used to take up
much hash space which could deplete the memory pool, but now we can have millions
of tracking points at hardly any cost.

Because it is a quite independent task, we could rewrite the MetaPost conversion code
in Lua quite early in the development. We got smaller and cleaner code, more flexibil-
ity, and also gained some speed. The code involved in this may change as soon as we
start experimenting with mplib. Our expectations are high because in a bit more mod-
ern designs a graphic engine cannot be missed. For instance, in educational material,
backgrounds and special shapes are all over the place, and we're talking about many
MetaPost runs then. We expect to bring down the processing time of such documents
considerably, if only because the MetaPost runtime will be close to zero (as experiments
have shown us).

While writing the code involved in the MetaPost conversion a new feature showed up
in Lua: 1peg, a parsing library. From that moment on 1peg was being used all over the
place, most noticeably in the code that deals with processing xml. Right from the start |
had the feeling that Lua could provide a more convenient way to deal with this input for-
mat. Some experiments with rewriting the Mkll mechanisms did not show the expected
speedup and were abandoned quickly.

Challenged by 1peg | then wrote a parser and started playing with a mixture of a tree
based and stream approach to xml (Mkll is mostly stream based). Not only is loading
xml code extremely fast (we used 40 megaByte files for testing), dealing with the tree is
also convenient. The additional MklV methods are currently being tested in real projects

174 The luafication of TEX and ConTgXt

and so far they result in an acceptable and pleasant mix of TgX and xml. For instance,
we can now selectively process parts of the tree using path expressions, hook in code,
manipulate data, etc.

The biggest impact of LuaTgX on the ConTgXt code base is not the previously mentioned
mechanisms but one not yet mentioned: fonts. Contrary to XjIgX, which uses third party
libraries, LuaTgX does not implement dealing with font specific issues at all. It can load
several fontformats and accepts font datain awell-defined table format. It only processes
character nodes into glyph nodes and it's up to the user to provide more by manipulating
the node lists. Of course there is still basic ligature building and kerning available but one
can bypass that with other code.

In MkIV, when we deal with Type1 fonts, we try to get away from traditional tfm files and
use afm files instead (indeed, we parse them using 1peg). The fonts are mapped onto
Unicode. Awaiting extensions of math we only use tfm files for math fonts. Of course
OpenType fonts are dealt with and this is where we find most Lua code in MkIV: imple-
menting features. Much of that is a grey area but as part of the Oriental TeX project we're
forced to deal with complex feature support, so that provides a good test bed as well as
some pressure for getting it done. Of course there is always the question to what extent
we should follow the (maybe faulty) other programs that deal with font features. We're
lucky that the Latin Modern and TgX Gyre projects provide real fonts as well as room for
discussion and exploring these grey areas.

In parallel to writing this, | made a tracing feature for Oriental TgXer Idris so that he could
trace what happened with the Arabic fonts that he is making. This was relatively easy be-
cause already in an early stage of MkIV some debugging mechanisms were built. One
of its nice features is that on an error, or when one traces something, the results will be
shown in a web browser. Unfortunately | have not enough time to explore such aspects
in more detail, but at least it demonstrates that we can change some aspects of the tradi-
tional interaction with TeX in more radical ways.

Many users may be aware of the existence of so-called virtual fonts, if only because it can
be a cause of problems (related to map files and such). Virtual fonts have a lot of potential
but because they were related to TgX's own font data format they never got very popular.
In LuaTpX we can make virtual fonts at runtime. In MkIV for instance we have a feature
(we provide features beyond what OpenType does) that completes a font by composing
missing glyphs on the fly. More of this trickery can be expected as soon as we have time
and reason to implement it.

In pdfTEX we have a couple of font related goodies, like character expansion (inspired
by Hermann Zapf) and character protruding. There are a few more but these had limita-
tions and were suboptimal and therefore have been removed from LuaTgX. After all, they
can be implemented more robustly in Lua. The two mentioned extensions have been
(of course) kept and have been partially reimplemented so that they are now uniquely

The luafication of TeX and ConTgXt 175

bound to fonts (instead of being common to fonts that traditional TEX shares in memory).
The character related tables can be filled with Lua and this is what MkIV now does. As
a result much TgX code could go away. We still use shape related vectors to set up the
values, but we also use information stored in our main character database.

A likely area of change is math and not only as a result of the TgX gyre math project which
will result in a bunch of Unicode compliant math fonts. Currently in MkIV the initializa-
tion already partly takes place using the character database, and so again we will end up
with less TEX code. A side effect of removing encoding constraints (i.e. moving to Uni-
code) is that things get faster. Later this year math will be opened up.

One of the biggestimpacts of opening up is the arrival of attributes. In traditional TEX only
glyph nodes have an attribute, namely the font id. Now all nodes can have attributes,
many of them. We use them to implement a variety of features that already were pre-
sent in Mkll, but used marks instead: color (of course including color spaces and trans-
parency), inter-character spacing, character case manipulation, language dependent pre
and post character spacing (for instance after colons in French), special font rendering
such as outlines, and much more. An experimental application is a more advanced glue/
penalty model with look-back and look-ahead as well as relative weights. This is inspired
by the one good thing that xml formatting objects provide: a spacing and pagebreak
model.

Itdoes not take much imagination to see that features demanding processing of node lists
come with a price: many of the callbacks that LuaTgX provides are indeed used and as a
result quite some time is spent in Lua. You can add to that the time needed for handling
font features, which also boils down to processing node lists. The second half of 2007
Taco and | spent much time on benchmarking and by now the interface between TgX and
Lua (passing information and manipulating nodes) has been optimized quite well. Of
course there's always a price for flexibility and LuaTgX will never be as fast as pdfTgX, but
then, pdfTgX does not deal with OpenType and such.

We can safely conclude that the impact of LuaTgX on ConTgXtis huge and that fundamen-
tal changes take place in all key components: files, fonts, languages, graphics, MetaPost
xml, verbatim and color to start with, but more will follow. Of course there are also less
prominent areas where we use Lua based approaches: handling url's, conversions, alter-
native math input to mention a few. Sometime in 2009 we expect to start working on
more fundamental typesetting related issues.

roadmap

On the LuaTgX website www. luatex . org you can find a roadmap. This roadmap is just
an indication of what happened and will happen and it will be updated when we feel the
need. Here is a summary.

176 The luafication of TpX and ConTgXt

merging engines

Merge some of the Aleph codebase into pdfTgX (which already has e-TgX) so that LuaTgX
in dvi mode behaves like Aleph, and in pdf mode like pdfTgX. There will be Lua call-
backs for file searching. This stage is mostly finished.

OpenType fonts

Provide pdf output for Aleph bidirectional functionality and add support for Open-
Type fonts. Allow Lua scripts to control all aspects of font loading, font definition and
manipulation. Most of this is finished.

tokenizing and node lists

Use Lua callbacks for various internals, complete access to tokenizer and provide ac-
cess to node lists at moments that make sense. This stage is completed.

paragraph building

Provide control over various aspects of paragraph building (hyphenation, kerning, lig-
ature building), dynamic loading loading of hyphenation patterns. Apart from some
small details these objectives are met.

MetaPost (mplib)

Incorporate a MetaPost library and investigate options for runtime font generation
and manipulation. This activity is on schedule and integration will take place before
summer 20038.

image handling

Image identification and loading in Lua including scaling and object management.
This is nicely on schedule, the first version of the image library showed up in the 0.22
beta and some more features are planned.

special features

Cleaning up of hz optimization and protruding and getting rid of remaining global font
properties. This includes some cleanup of the backend. Most of this stage is finished.

page building

Control over page building and access to internals that matter. Access to inserts. This
is on the agenda for late 2008.

The luafication of TeX and ConTgXt 177

o X primitives

Access to and control over most TgX primitives (and related mechanisms) as well as all
registers. Especially box handling has to be reinvented. This is an ongoing effort.

e pdfbackend

Open up most backend related features, like annotations and object management.
The first code will show up at the end of 2008.

e math

Open up the math engine parallel to the development of the TgX Gyre math fonts.
Work on this will start during 2008 and we hope that it will be finished by early 2009.

e cweb

Convert the TgX Pascal source into cweb and start using Lua as glue language for com-
ponents. This will be tested on mplib first. This is on the long term agenda, so maybe
around 2010 you will see the first signs.

In addition to the mentioned functionality we have a couple of ideas that we will imple-
ment along the road. The first formal beta was released at tug 2007 in San Diego (usa).
The first formal release will be at tug 2008 in Cork (Ireland). The production version will
be released at EuroTpX in the Netherlands (20009).

Eventually LuaTgX will be the successor to pdfTEX (informally we talk of pdfTEX version 2).
It can already be used as a drop-in for Aleph (the stable variant of Omega). It provides
a scripting engine without the need to install a specific scripting environment. These
factors are amongthe reasons why distributors have added the binaries to the collections.
Norbert Preining maintains the linux packages, Akira Kakuto provides Windows binaries
as part of his distribution, Arthur Reutenauer takes care of MacOSX and Christian Schenk
recently added LuaTgX to MIkTgX. The LuaTgX and mplib projects are hosted at Supelec
by Fabrice Popineau (one of our technical consultants). And with Karl Berry being one
of our motivating supporters, you can be sure that the binaries will end up someplace in
TeXLive this year.

178 The luafication of TX and ConTgXt

XXIl The MetaPost Library

This chapter is written by Taco and Hans around the time that mplib was integrated into
LuaTgX. It is part of our torture test.

introduction

If MetaPost support had not been as tightly integrated into ConTgXt as it is, at least half of
the projects Pragma ADE has been doing in the last decade could not have been done at
all. Take for instance backgrounds behind text or graphic markers alongside text. These
are probably the most complex mechanisms in ConTgXt: positions are stored, and posi-
tional information is passed on to MetaPost, where intersections between the text areas
and the running text are converted into graphics that are then positioned in the back-
ground of the text. Underlining of text (sometimes used in the educational documents
that we typeset) and change bars (in the margins) are implemented using the same mech-
anism because those are basically a background with only one of the frame sides drawn.

You can probably imagine that a 300 page document with several such graphics per page
takes a while to process. A nice example of such integrated graphics is the LuaTgX refer-
ence manual, that has an unique graphic at each page: a stylized image of a revolving
moon.

@ //.\x\ . - - - @
¢ 066666
~_-7 S -7 S -7 ~_-7 \\7./ S -7 S -7
Most of the running time integrating such graphics seemed to be caused by the mechan-
ics of the process: starting the separate MetaPost interpreter and having to deal with a
number of temporary files. Therefore our expectations were high with regards to inte-
grating MetaPost more tightly into LuaTgX. Besides the speed gain, it also true that the
simpler the process of using such use of graphics becomes, the more modern a TgX runs

looks and the less problems new users will have with understanding how all the processes
cooperate.

This article will not discuss the application interface of the mplib library in detail, for that
there is the LuaTeX manual. In short, using the embedded MetaPost interpreter in LuaTgX
boils down to the following:

The MetaPost Library 179

e Open an instance using mplib.new, either to process images with a format to be
loaded, or to create such a format. This function returns a library object.

e Execute sequences of MetaPost commands, using the object's execute method. This
returns a result.

e Check if the result is valid and (if it is okay) request the list of objects. Do whatever
you want with them, most probably convert them to some output format. You can
also request a string representation of a graphic in PostScript format.

There is no need to close the library object. As long as you didn't make any fatal errors,
the library recovers well and can stay alive during the entire LuaTgX run.

Support for mplib depends on a few components: integration, conversion and exten-
sions. This article shows some of the code involved in supporting the library. Let's start
with the conversion.

conversion

The result of a MetaPost run traditionally is a PostScript language description of the gen-
erated graphic(s). When pdf is needed, that PostScript code has to be converted to the
target format. This includes embedded text as well as penshapes used for drawing. To
demonstrate, here is a simple example graphic:

draw fullcircle
scaled 2cm
withpen pencircle xscaled 1mm yscaled .5mm rotated 30
withcolor .7bred ;

Figure XXIL1 Notice how the pen is not a circle but a rotated ellipse. Later on it will be-
come clear what the consequences of that are for the conversion.

How does this output look in PostScript? If the preamble is left out it looks
like this:

%1PS
%/%BoundingBox: -30 -30 30 30
%LHiResBoundingBox: -29.624 -29.28394 29.624 29.28394
%hCreator: MetaPost 1.207
%%CreationDate: 2009.09.21:1639
%hPages: 1
% <<stripped preamble was here>>
%hPage: 1 1
0.75 0 O R 2.55513 hlw rd 1 1j 10 ml
q n 28.34645 0 m
28.34645 7.51828 25.35938 14.72774 20.04356 20.04356 c

180 The MetaPost Library

14.72774 25.35938 7.51828 28.34645 0 28.34645 c
-7.51828 28.34645 -14.72774 25.35938 -20.04356 20.04356 c
-25.35938 14.72774 -28.34645 7.51828 -28.34645 0 c
-28.34645 -7.51828 -25.35938 -14.72774 -20.04356 -20.04356 c
-14.72774 -25.35938 -7.51828 -28.34645 0 -28.34645 c
7.51828 -28.34645 14.72774 -25.35938 20.04356 -20.04356 c
25.35938 -14.72774 28.34645 -7.51828 28.34645 0 c p

[0.96077 0.5547 -0.27734 0.4804 0 0] t S Q
P
% HEQOF

The most prominent code here concerns the path. The numbers in brackets define the
transformation matrix for the pen we used. The pdf variant looks as follows:

G

50 0.000 0.000 rg 0.750 0.000 0.000 RG

10.000000 M

1]

17

2.555120 w

q

0.960769 0.554701 -0.277351 0.480387 0.000000 0.000000 cm
22.127960 -25.551051 m

25.516390 -13.813203 26.433849 0.135002 24.679994 13.225878 c
22.926120 26.316745 18.644486 37.478783 12.775526 44.255644 c
6.906565 51.032505 -0.067572 52.867453 -6.613036 49.359793 c
-13.158495 45.852096 -18.739529 37.288899 -22.127960 25.551051 c
-25.516390 13.813203 -26.433849 -0.135002 -24.679994 -13.225878 c
-22.926120 -26.316745 -18.644486 —-37.478783 -12.775526 —44.255644 c
-6.906565 -51.032505 0.067572 -52.867453 6.613036 -49.359793 c
13.158495 -45.852096 18.739529 -37.288899 22.127960 -25.551051 c
h S

Q

0gogG

Q

q
0go
0.750

The operators don't look much different from the PostScript, which is mostly due to the
factthatin the PostScript code, the preamble defines shortcuts like ¢ for curveto. Again,
most code involves the path. However, this time the numbers are different and the trans-
formation comes before the path.

In the case of pdf output, we could use TgX itself to do the conversion: a generic con-
verter is implemented in supp-pdf . tex, while a converter optimized for ConTgXt MkII

The MetaPost Library 181

is defined in the files whose names start with meta-pdf. Butin ConTgXt MkIV we use Lua
code for the conversion instead. Thanks to Lua's powerful Ipeg parsing library, this gives
cleaner code and is also faster. This converter currently lives in m1ib-pdf . lua.

Now, with the embedded MetaPost library, conversion goes different still because now
it is possible to request the drawn result and associated information in the form of Lua
tables.

figure={

["boundingbox"]={
["11x"]=-29.623992919922,
["11y"]1=-29.283935546875,
["urx"]=29.623992919922,
["ury"]1=29.283935546875,

s

["objects"]={

{

["color"]={ 0.75, 0, O },

["linecap"]=1,

["linejoin"]=1,

["miterlimit"]=10,

["path"]={

{
["left_x"1=28.346450805664,
["left_y"]1=-7.5182800292969,
["right_x"]1=28.346450805664,
["right_y"]1=7.5182800292969,
["x_coord"]=28.346450805664,
["y_coord"]=0,

s

["left_x"]=25.359375,
["left_y"]1=14.727737426758,
["right_x"]=14.727737426758,
["right_y"1=25.359375,
["x_coord"]=20.043563842773,
["y_coord"]=20.043563842773,
+,
{
["left_x"]=7.5182800292969,
["left_y"]1=28.346450805664,
["right_x"]=-7.5182800292969,
["right_y"]1=28.346450805664,

182 The MetaPost Library

-~

["x_coord"]=0,
["y_coord"]=28.346450805664,
},

["left_x"1=-14.727737426758,
["left_y"]=25.359375,
["right_x"]=-25.359375,
["right_y"]=14.727737426758,
["x_coord"]=-20.043563842773,
["y_coord"]=20.043563842773,

b

["left_x"]1=-28.346450805664,
["left_y"1=7.5182800292969,
["right_x"]=-28.346450805664,
["right_y"]=-7.5182800292969,
["x_coord"]=-28.346450805664,
["y_coord"]=0,

1+,

["left_x"]=-25.359375,
["left_y"1=-14.727737426758,
["right_x"]=-14.727737426758,
["right_y"]=-25.359375,
["x_coord"]=-20.043563842773,
["y_coord"]=-20.043563842773,
1,

["left _x"]=-7.5182800292969,
["left_y"]1=-28.346450805664,
["right_x"]=7.5182800292969,
["right_y"]1=-28.346450805664,
["x_coord"]=0,
["y_coord"]=-28.346450805664,
},

["left_x"1=14.727737426758,
["left_y"]1=-25.359375,
["right_x"]1=25.359375,
["right_y"]=-14.727737426758,
["x_coord"]=20.043563842773,
["y_coord"]=-20.043563842773,

The MetaPost Library

183

¥,
1,
["pen"]={
{
["left_x"1=2.4548797607422,
["left_y"1=1.4173278808594,
["right_x"]=-0.70866394042969,
["right_y"]1=1.2274475097656,
["x_coord"]=0,
["y_coord"]=0,
},
["type"]="elliptical",
,
["type"]="outline",
1,
1,
}

This means that instead of parsing PostScript output, we now can operate on a proper
datastructure and get code like the following:

function convertgraphic(result)
if result then
local figures = result.fig
if figures then
for fig in ipairs(figures) do
local 11x, 1lly, urx, ury = unpack(fig:boundingbox())
if urx > 1lx then
startgraphic(1lx, 1lly, urx, ury)
for object in ipairs(fig:objects()) do
if object.type == "..." then

flushgraphic(...)
else

end
end
finishgraphic()
end
end
end

184 The MetaPost Library

end
end

Here result is what the library returns when one or more graphics are processed. As
you can deduce from this snippet, a result can contain multiple figures. Each figure cor-
responds with abeginfig ... endfig. The graphic operators that the converter gen-
erates (so called pdf literals) have to be encapsulated in a proper box so this is why we
have:

e startgraphic: start packaging the graphic
e flushgraphic: pipe literals to TgX
e finishgraphic: finish packaging the graphic

It does not matter what number you passed to beginfig, the graphics come out in the
natural order.

Little over half a dozen different object types are possible. The example MetaPost draw
command from above results in an out1line object. This object contains not only path
information but also carries rendering data, like the color and the pen. So, in the end we
will flush code like 1 Mwhich setsthemiterlimit tooneor .5 gwhich setsthe color
to 50% gray, in addition to a path.

Because objects are returned in a way that closely resembles a MetaPost's internals, some
extra work needs to be done in order to calculate paths with elliptical pens. An example
of a helper function in somewhat simplified form is shown next:

function pen_characteristics(object)
local p = object.pen[1]
local wx, wy, width
if p.right_x == p.x_coord and p.left_y == p.y_coord then
wx = abs(p.left_x - p.x_coord)

wy = abs(p.right_y - p.y_coord)
else —- pyth: sqrt(a”2 +b~2)
wx = pyth(p.left_x - p.x_coord, p.right_x - p.x_coord)
wy = pyth(p.left_y - p.y_coord, p.right_y - p.y_coord)
end

if wy/coord_range_x(object.path, wx) >=
wx/coord_range_y(object.path, wy) then

width = wy
else

width = wx
end

local sx, sy
local rx, ry

p.left_x, p.right_y
p.-left_y, p.right_x

The MetaPost Library 185

local tx, ty = p.x_coord, p.y_coord
if width ~= 1 then
if width == 0 then
sx, sy =1, 1
else
rx, ry, sx, sy = rx/width, ry/width, sx/width, sy/width
end
end
if abs(sx) < eps then sx = eps end
if abs(sy) < eps then sy = eps end
return sx, rx, ry, sy, tx, ty, width
end

If sx and sy are 1, there is no need to transform the path, otherwise a suitable transforma-
tion matrix is calculated and returned. The function itself uses afew helpers that make the
calculations even more obscure. This kind of code does not fall in the category trivial and
as already mentioned, these basic algorithms were derived from the MetaPost sources.
Even so, these snippets demonstrate that interfacing using Lua does not look that bad.

In the actual MkIV code things look a bit different because it does a bit more and uses
optimized code. There you will also find the code dealing with the actual transformation,
of which these helpers are just a portion.

If you compare the PostScript and the pdf code you will notice that the paths looks differ-
ent. This is because the use and application of a transformation matrix in pdf is different
from how it is handled in PostScript. In pdf more work is assumed to be done by the
pdf generating application. This is why in both the TEX and the Lua based converters you
will find transformation code and the library follows the same pattern. In that respect pdf
differs fundamentally from PostScript.

Within the TgX based converter there was the problem of keeping the needed calcula-
tions within TgX's accuracy, which fortunately permits larger values that MetaPost can pro-
duce. This plus the parsing code resulted in a not-that-easy to follow bunch of TEX code.
The Lua based parser is more readable, but since it also operates on PostScript code it is
kind of unnatural too, but at least there are less problems with keeping the calculations
sane. The mplib based converter is definitely the cleanest and least sensitive to future
changes in the PostScript output. Does this mean that there is no ugly code left? Alas, as
we will see in the next section, dealing with extensions is still somewhat messy. In prac-

186 The MetaPost Library

tice users will not be bothered with such issues, because writing a converter is a one time
job by macro package writers.

extensions

In MetaFun, which is the MetaPost format used with ConTgXt, a few extensions are pro-
vided, like:

cmyk, spot and multitone colors
including external graphics
lineair and circulair shades

texts converted to outlines
inserting arbitrary texts

Until now, most of these extensions have been implemented by using specially coded
colors and by injecting so called specials (think of them as comments) into the output.
On one of our trips to a TgX conference, we discussed ways to pass information along
with paths and eventually we arrived at associating text strings with paths as a simple and
efficient solution. As a result, recently MetaPost was extended by withprescript and
withpostscript directives. For those who are unfamiliar with these new scripts, they
are used as follows:

draw fullcircle withprescript "hello" withpostscript "world" ;

In the PostScript output these scripts end up before and after the path, but in the pdf
converter they can be overloaded to implement extensions, and that works reasonably
well. However, at the moment there cannot be multiple pre- and postscripts associated
with a single path inside the MetaPost internals. This means that for the moment, the
scripts mechanism is only used for a few of the extensions. Future versions of mplib may
provide more sophisticated methods for carrying information around.

The MkIV conversion mechanism uses scripts for graphic inclusion, shading and text pro-
cessing but unfortunately cannot use them for more advanced color support.

A nasty complication is that the color spaces in MetaPost don't cast, which means that
one cannot assign any color to a color variables: each colorspace has it's own type of
variable.

color one ; one := (1,1,0) ; % correct
cmykcolor two ; two := (1,0,0,1) ; % correct
one := two ; Y, error

fill fullcircle scaled 1cm withcolor .5[one,two] ; % error

In ConTgXt we use constructs like this:

The MetaPost Library 187

\startreusableMPgraphic{test}
f£ill fullcircle scaled 1lcm withcolor \MPcolor{mycolor} ;
\stopreusableMPgraphic

\reuseMPgraphic{test}

Because withcolor is clever enough to understand what color type it receives, this is
ok, but how about:

\startreusableMPgraphic{test}

color ¢ ; ¢ := \MPcolor{mycolor} ;

fill fullcircle scaled 1cm withcolor c ;
\stopreusableMPgraphic

Here the color variable only accepts an rgb color and because in ConTgXt there is mixed
color space support combined with automatic colorspace conversions, it doesn't know
inadvance what type itis goingto get. By implementing color spaces other than rgb using
special colors (as before) such type mismatches can be avoided.

The two techniques (coding specials in colors and pre/postscripts) cannot be combined
because a script is associated with a path and cannot be bound to a variable like c. So
this again is an argument for using special colors that remap onto cmyk spot or multi-
tone colors.

Another area of extensions is text. In previous versions of ConTgXt the text processing
was already isolated: text ended up in a separate file and was processed in an separate
run. More recent versions of ConTgXt use a more abstract model of boxes that are pre-
processed before a run, which avoids the external run(s). Inthe new approach everything
can be kept internal. The conversion even permits constructs like:

for i=1 upto 100
draw btex oeps etex rotated i ;
endfor ;

but since this construct is kind of obsolete (at least in the library version of MetaPost) it is
better to use:

for i=1 upto 100
draw textext("cycle " & decimal i) rotated i ;
endfor ;

Internally atrial pass is done so thatindeed 100 different texts will be drawn. The through-
put of texts is so high that in practice one will not even notice that this happens.

Dealing with text is yet another example of using Ipeg. The following snippet of code
sheds some light on how text in graphics is dealt with. Actually this is a variation on a

188 The MetaPost Library

previous implementation. That one was slightly faster but looked more complex. It was
also not robust for complex texts defined in macros in a format.

local P, S, V, Cs = lpeg.P, 1lpeg.S, lpeg.V, lpeg.Cs

local btex = P("btex")

local etex = P(" etex")

local vtex = P("verbatimtex")
local ttex = P("textext")
local gtex = P("graphictext")

local spacing = S(" \n\r\t\v")~"0
local dquote PC'"")

local found = false

local function convert(str)
found = true
return "textext(\"" .. str .. "\")"
end
local function ditto(str)
return "\" & ditto & \""
end
local function register()
found = true
end

local parser = P {

[1] = Cs((V(2)/register + V(3)/convert + 1)70),
[2] = ttex + gtex,
[3] = (btex + vtex) * spacing *

Cs((dquote/ditto + (l-etex))”0) * etex,
}

function metapost.check_texts(str)
found = false
return parser:match(str), found
end

If you are unfamiliar with Ipeg it may take a while to see what happens here: we replace
the text between btex and etex by a call to textext, a macro. Special care is given to
embedded double quotes.

When text is found, the graphic is processed two times. The definition of textext is
different for each run. The first run we have:

The MetaPost Library 189

vardef textext(expr str) =
image (
draw unitsquare
withprescript "tf"
withpostscript str ;
)
enddef ;

After the first run the result is not really converted, but just the outlines with the tf pre-
script are filtered. In the loop over the object there is code like:

local prescript = object.prescript
if prescript then
local special = metapost.specials[prescript]
if special then
special(object.postscript,object)
end
end

Here, metapost is just the namespace used by the converter. The prescript tag tf trig-
gers a function:

function metapost.specials.tf(specification,object)
tex.sprint(tex.ctxcatcodes,format ("\\MPLIBsettext{%s}{%s}",
metapost.textext_current,specification))
if metapost.textext_current < metapost.textext_last then
metapost.textext_current = metapost.textext_current + 1
end

end

Again, you can forget about the details of this function. Important is that there is a call
out to TgX that will process the text. Each snippet gets the number of the box that holds
the content. The macro that is called just puts stuff in a box:

\def\MPLIBsettext#1#2Y,
{\global\setbox#1\hbox{#2}}

In the next processing cycle of the MetaPost code, the textext macro does something
different :

vardef textext(expr str) =
image (
tt.n := _tt.n_ +1;
draw unitsquare

190 The MetaPost Library

xscaled tt w_[_tt n_]
yscaled (_tt_h_[_tt_n_] + _tt_d_[_tt_n_])
withprescript "ts"
withpostscript decimal _tt_n_ ;
)
enddef ;

This time the by then known dimensions of the box that is used to store the snippet are
used. These arestoredinthe _tt_w_, _tt_h_and _tt_d_ arrays. The arrays are defined
by Lua using information about the boxes, and passed to the library before the second
run. The result from the second MetaPost run is converted, and again the prescript is
used as trigger:

function metapost.specials.ts(specification,object,result)

local op = object.path

local first, second, fourth = op[1], opl[2], opl[4]

local tx, ty = first.x_coord , first.y_coord

local sx, sy = second.x_coord - tx, fourth.y_coord - ty

local rx, ry = second.y_coord - ty, fourth.x_coord - tx

if sx == 0 then sx = 0.00001 end

if sy == 0 then sy = 0.00001 end

metapost.flushfigure(result)

tex.sprint(tex.ctxcatcodes,format(
"\\MPLIBgettext{hf }H%f{hf }Hhf HUE It H%s}",

SX,rX,ry,sy,tx,ty,metapost.textext_current))

end

At this point the converter is actually converting the graphic and passing pdf literals to
TeX. As soon as it encounters a text, it flushes the pdf code collected so far and injects
some TgX code. The TgX macro looks like:

\def\MPLIBgettext#1#2#3#4#5#6#77,
{\ctxlua{metapost.sxsy (\number\wd#7, \number\ht#7, \number\dp#7) }%
\pdfliteral{q #1 #2 #3 #4 #5 #6 cm}’
\vbox to \zeropoint{\vss\hbox to \zeropoint
{\scale[sx=\sx,sy=\syl{\raise\dp#7\box#7}\hss}}/
\pdfliteral{Q}}

Because text can be transformed, it needs to be scale back to the right dimensions, using
both the original box dimensions and the transformation of the unitquare associated with
the text.

The MetaPost Library 191

local factor = 65536x(7200/7227)

function metapost.sxsy(wd,ht,dp) -- helper for text
commands.edef ("sx",(wd ~= 0 and 1/(wd /(factor))) or 0)
commands .edef ("sy",(wd ~= 0 and 1/((ht+dp)/(factor))) or 0)
end

So, in fact there are the following two processing alternatives:

e tex: calls a Lua function that processed the graphic
e |ua: parse the MetaPost code for texts and decide if two runs are needed

Now, if there was no text to be found, the continuation is:

e lua: process the code using the library
e lua: convert the resulting graphic (if needed) and check if texts are used

Otherwise, the next steps are:

lua: process the code using the library
lua: parse the resulting graphic for texts (in the postscripts) and signal TgX to process
these texts afterwards
tex: process the collected text and put the result in boxes
lua: process the code again using the library but this time let the unitsquare be trans-
formed using the text dimensions

e [ua: converttheresulting graphic and replace the transformed unitsquare by the boxes
with text

The processor itself is used in the MkIV graphic function that takes care of the multiple
passes mentioned before. To give you an idea of how it works, here is how the main
graphic processing function roughly looks.

local current_format, current_graphic

function metapost.graphic_base_pass(mpsformat,str,preamble)
local prepared, done = metapost.check_texts(str)
metapost.textext_current = metapost.first_box
if done then
current_format, current_graphic = mpsformat, prepared
metapost.process (mpsformat, {
preamble or "",
"beginfig(1); ",
" trial run_ := true ;",
prepared,
"endfig ;"

192 The MetaPost Library

}, true) -- true means: trialrun
tex.sprint(tex.ctxcatcodes,
"\\ctxlua{metapost.graphic_extra_pass()}")

else

end
end

metapost.process (mpsformat, {
preamble or "",
"beginfig(1); ",
" trial run_ := false ;",
str,
"endfig ;"

3)

function metapost.graphic_extra_pass()
metapost.textext_current = metapost.first_box
metapost.process(current_format, {

b

end

"beginfig(0); ",

" trial run_ := false ;",
table.concat (metapost.text_texts_data()," ;\n"),
current_graphic,

"endfig ;"

The box information is generated as follows:

function metapost.text_texts_data()
local t, n={ 2}, 0

for

end

i = metapost.first_box, metapost.last_box do

n=n+1

if tex.box[i] then

t [#t+1] = format(

"_tt_w_[%il:=%f;_tt_h_[hil :=%f;_tt_d_[%il:=\f;",
n,tex.wd[i]/factor,
n,tex.ht[i] /factor,
n,tex.dpli]/factor

else

break
end

The MetaPost Library 193

return t
end

This is a typical example of accessing information available inside TgX from Lua, in this
case information about boxes.

The trial_run flag is used at the MetaPost end, in fact the textext macro looks as
follows:

vardef textext(expr str) =
if _trial run_
7 see first variant above
else
7, see second variant above
fi
enddef ;

This trickery is not new. We used it already in ConTgXt for some time, but until now the
multiple runs took way more time and from the perspective of the user this all looked
much more complex.

It may not be that obvious, but: in the case of a trial run (for instance when texts are
found), after the first processing stage, and during the parsing of the result, the commands
that typeset the content will be printed to TgX. After processing, the command to do an
extra pass is printed to TeX also. So, once control is passed back to TgX, at some point TgX
itself will pass control back to Lua and do the extra pass.

The base function is called in:

function metapost.graphic(mpsformat,str,preamble)
local mpx = metapost.format(mpsformat or "metafun")
metapost.graphic_base_pass(mpx,str,preamble)

end

Themetapost.format functionis part of m1ib-run. Itloads the metafun format, pos-
sibly after (re)generating it.

Now, admittedly all this looks a bit messy, but in pure TEX macros it would be even more
so. Sometime in the future, the postponed calls to \ctxlua and the explicit \pdflit-
erals can and will be replaced by using direct node generation, but that requires a
rewrite of the internal LuaTgX support for pdf literals.

The snippets are part of the m1ib-x files of MkIV. These files are tagged as experimental
and will stay that way for a while yet. This is proved by the fact that by now we use a
slightly different approach.

194 The MetaPost Library

Summarizing the impact of mplib on extensions, we can conclude that some are done
better and some more or less the same. There are some conceptual problems that pro-
hibit using pre- and postscripts for everything (at least currently).

integrating

The largestimpact of mplib is processing graphics at runtime. In Mkll there are two meth-
ods: real runtime processing (each graphic triggered a call to MetaPost) and collective
processing (between TgX runs). The first method slows down the TgX run, the second
method generates a whole lot of intermediate PostScript files. In both cases there is a lot
of file io involved.

In MkIV, the integrated library is capable of processing thousands of graphics persecond,
including conversion. The preliminary tests (which involved no extensions) involved graph-
ics with 10 random circles drawn with penshapes in random colors, and the thoughput
was around 2000 such graphics per second on a 2.3 MHz Core Duo:

‘

In practice there will be some more overhead involved than in the tests. For instance, in
ConTgXtinformation about the current state of TgX has to be passed on also: page dimen-
sions, font information, typesetting related parameters, preamble code, etc.

The whole TgX interface is written around one process function:
metapost.graphic(metapost.format ("metafun"),"mp code")

optionally a preamble can be passed as the third argument. This one function is used in
several other macros, like:

\startMPcode ... \stopMPcode
\startMPpage ... \stopMPpage
\startuseMPgraphic {name} ... \stopuseMPgraphic
\startreusableMPgraphic{name} ... \stopreusableMPgraphic
\startuniqueMPgraphic {name} ... \stopuniqueMPgraphic
\useMPgraphic{name}

\reuseMPgraphic{name}
\uniqueMPgraphic{name}

The MetaPost Library 195

The user interface is downward compatible: in MkIV the same top-level commands are
provided as in Mkll. However, the (previously required) configuration macros and flags
are obsolete.

This time, the conclusion is that the impact on ConTgXtis immense: The code forembed-
ding graphics is very clean, and the running time for graphics inclusion is now negligible.
Support for text in graphics is more natural now, and takes no runtime either (in Mkl
some parsing in TeX takes place, and if needed long lines are split; all this takes time).

In the styles that Pragma ADE uses internally, there is support for the generation of place-
holders for missing graphics. These placeholders are MetaPost graphics that have some
60 randomly scaled circles with randomized colors. The time involved in generating 50
such graphics is (on Hans' machine) some 14 seconds, while in LuaTgX only half a second
is needed.

Because LuaTgX needs more startup time and deals with larger fonts resources, pdfTgX is
generally faster, but now that we have mplib, LuaTgX suddenly is the winner.

196 The MetaPost Library

XXHI The luaTgX Mix

introduction

The idea of embedding Lua into TEX originates in some experiments with Lua embedded
in the SciTE editor. You can add functionality to this editor by loading Lua scripts. This is
accomplished by a library that gives access to the internals of the editing component.

The first integration of Lua in pdfTgX was relatively simple: from TgX one could call out
to Lua and from Lua one could print to TgX. My first application was converting math en-
coded a calculator syntax to TgX. Following experiments dealt with MetaPost. At this point
integration meant as little as: having some scripting language as addition to the macro
language. But, even in this early stage further possibilities were explored, for instance in
manipulating the final output (i.e. the pdf code). The first versions of what by then was
already called LuaTgX provided access to some internals, like counter and dimension reg-
isters and the dimensions of boxes.

Boosted by the oriental TEX project, the team started exploring more fundamental possi-
bilities: hooks in the input/output, tokenization, fonts and nodelists. This was followed
by opening up hyphenation, breaking lines into paragraphs and building ligatures. At
that point we not only had access to some internals but also could influence the way TgX
operates.

Afterthat, an excursion was made to mplib, which fulfilled along standing wish fora more
natural integration of MetaPost into TgX. At that point we ended up with mixtures of TgX,
Lua and MetaPost code.

Medio 2008 we still need to open up more of TgX, like page building, math, alignments
and the backend. Eventually LuaTeX will be nicely split up in components, rewritten in C,
and we may even end up with Lua glueing together the components that make up the
TeX engine. At that point the interoperation between TgX and Lua may be more rich that
itis now.

In the next sections | will discuss some of the ideas behind LuaTgX and the relationship be-
tween Lua and TiX and how it presents itself to users. | will not discuss the interface itself,
which consists of quite some functions (organized in pseudo libraries) and the mecha-
nisms used to access and replace internals (we call them callbacks).

tex vs. lua

TeX is a macro language. Everything boils down to either allowing stepwise expansion or
explicitly preventing it. There are no real control features, like loops; tail recursion is a

The luaTeX Mix 197

key concept. There are few accessible data-structures like numbers, dimensions, glue,
token lists and boxes. What happens inside TgX is controlled by variables, mostly hidden
from view, and optimized within the constraints of 30 years ago.

The original idea behind TEX was that an author would write a specific collection of macros
foreach publication, butincreasing popularity among non-programmers quickly resulted
in distributed collections of macros, called macro packages. They started small but grew
and grew and by now have become pretty large. In these packages there are macros
dealing with fonts, structure, page layout, graphic inclusion, etc. There is also code deal-
ing with user interfaces, process control, conversion and much of that code looks out of
place: the lack of control features and string manipulation is solved by mimicking other
languages, the unavailability of a float datatype is compensated by misusing dimension
registers, and you can find provisions to force or inhibit expansion all over the place.

TeX is a powerful typographical programming language but lacks some of the handy fea-
tures of scripting languages. Handy in the sense that you will need them when you want
to go beyond the original purpose of the system. Lua is a powerful scripting language, but
knows nothing of typesetting. To some extent it resembles the language that TEX was writ-
ten in: Pascal. And, since Lua is meant for embedding and extending existing systems, it
makes sense to bring Lua into TEX. How do they compare? Let's give some examples.

About the simplest example of using Lua in TgX is the following:
\directlua { tex.print(math.sqrt(10)) }

This kind of application is probably what most users will want and use, if they use Lua at
all. However, we can go further than that.

In TEX a loop can be implemented as in the plain format (copied with comment):

\def\loop#1\repeat{\def\body{#1}\iterate}
\def\iterate{\body\let\next\iterate\else\let\next\relax\fi\next}
\let\repeat=\fi % this makes \loop...\if...\repeat skippable

This is then used as:

\newcount \mycounter \mycounter=1
\loop

\advance\mycounter 1
\ifnum\mycounter < 11
\repeat

The definition shows a bit how TeX programming works. Of course such definitions can
be wrapped in macros, like:

198 The luaTX Mix

\forloop{1}{10}{1}{some action}

and this is what often happens in more complex macro packages. In order to use such
control loops without side effects, the macro writer needs to take measures that per-
mit for instance nested usage and avoids clashes between local variables (counters or
macros) and user defined ones. Here we use a counter in the condition, but in practice
expressions will be more complex and this is not that trivial to implement.

The original definition of the iterator can be written a bit more efficient:
\def\iterate{\body \expandafter\iterate \fi}

And indeed, in macro packages you will find many such expansion control primitives
being used, which does not make reading macros easier.

Now, get me right, this does not make TgX less powerful, it's just that the language is fo-
cused on typesetting and not on general purpose programming, and in principle users
can do without: documents can be preprocessed using another language, and docu-
ment specific styles can be used.

We have to keep in mind that TgX was written in a time when resources in terms of mem-
ory and cpu cycles weres less abundant than they are now. The 255 registers per class
and the about 3000 hash slots in original TEX were more than enough for typesetting a
book, but in huge collections of macros they are not all that much. For that reason many
macropackages use obscure names to hide their private registers from users and instead
of allocating new ones with meaningful names, existing ones are shared. It is therefore
not completely fair to compare TgX code with Lua code: in Lua we have plenty of memory
and the only limitations are those imposed by modern computers.

In Lua, a loop looks like this:

for i=1,10 do

end

But while in the TgX example, the content directly ends up in the input stream, in Lua we
need to do that explicitly, so in fact we will have:

for i=1,10 do
tex.print("...")
end

And, in order to execute this code snippet, in LuaTgX we will do:

The luaTeX Mix 199

\directlua 0 {
for i=1,10 do
tex.print("...")
end

by

So, eventually we will end up with more code than just Lua code, but still the loop itself
looks quite readable and more complex loops are possible:

\directlua 0 {
local t, n={13}, O
while true do
local r = math.random(1,10)
if not t[r] then
tlr], n = true, n+1
tex.print(r)
if n == 10 then break end
end
end

}

This will typeset the numbers 1to 10 in randomized order. Implementing a random num-
ber generator in pure TgX takes some bit of code and keeping track of already defined
numbers in macros can be done with macros, but both are not very efficient.

| already stressed that TgX is a typographical programming language and as such some
things in TgX are easier than in Lua, given some access to internals:

\setbox0=\hbox{x} \the\wdO
In Lua we can do this as follows:

\directlua 0 {
local n = node.new('glyph')
n.font = font.current()
n.char = string.byte('x')
tex.box[0] = node.hpack(n)
tex.print (tex.wd[0] /65536 .. "pt")
}

One pitfall here is that TEX rounds the number differently than Lua. Both implementations
can be wrapped in a macro cq. function:

\def\measured#1{\setbox0=\hbox{#1}\the\wdO\relax}

200 The luaTgX Mix

Now we get:
\measured{x}
The same macro using Lua looks as follows:

\directlua 0 {
function measure(chr)
local n = node.new('glyph')
n.font = font.current()
n.char = string.byte(chr)
tex.box[0] = node.hpack(n)
tex.print (tex.wd[0]/65536 .. "pt")

end

}
\def\measured#1{\directluaO{measure("#1")}}

In both cases, special tricks are needed if you want to pass for instance a # to TgX's variant,
ora " to Lua. In both cases we can use shortcuts like \# and in the second case we can
pass strings as long strings using double square brackets to Lua.

This example is somewhat misleading. Imagine that we want to pass more than one char-
acter. The TgX variant is already suited for that, but the function will now look like:

\directlua 0 {
function measure(str)
if str == "" then
tex.print ("Opt")
else
local head, tail = nil, nil
for chr in str:gmatch(".") do
local n = node.new('glyph')
n.font = font.current()
n.char = string.byte(chr)
if not head then
head = n
else
tail.next = n
end
tail = n

end

tex.box[0] = node.hpack(head)

tex.print (tex.wd[0] /65536 .. "pt")
end

The luaTX Mix 201

end

}

And still it's not okay, since TgX inserts kerns between characters (depending on the font)
and glue between words, and doing that all in Lua takes more code. So, it will be clear
that although we will use Lua to implement advanced features, TgX itself still has quite
some work to do.

In the following example we show code, but this is not of production quality. It just
demonstrates a new way of dealing with text in TgX.

Occasionally adesign demands that at some place the first character of each word should
be uppercase, or that the first word of a paragraph should be in small caps, or that each
first line of a paragraph has to be in dark blue. When using traditional TgX the user then
has to fall back on parsing the data stream, and preferably you should then start such a
sentence with a command that can pick up the text. For accentless languages like English
this is quite doable but as soon as commands (for instance dealing with accents) enter
the stream this process becomes quite hairy.

The next code shows how ConTpXt Mkll defines the \Word and \Words macros that cap-
italize the first characters of word(s). The spaces are really important here because they
signal the end of a word.

\def\doWord#1,
{\bgroup\the\everyuppercase\uppercase{#1}\egroup}

\def\Word#19
{\doWord#1}

\def\doprocesswords#1 #2\od
{\doifsomething{#1}{\processword{#1} \doprocesswords#2 \od}}

\def\processwords#1
{\doprocesswords#1 \od\unskip}

\let\processword\relax

\def\Words
{\let\processword\Word \processwords}

Actually, the code is not that complex. We split of words and feed them to a macro that
picks up the first token (hopefully a character) which is then fed into the \uppercase
primitive. This assumes that for each character a corresponding uppercase variant is de-
fined using the \uccode primitive. Exceptions can be dealt with by assigning relevant

202 The luaTX Mix

code to the token register \everyuppercase. However, such macros are far from ro-
bust. What happens if the text is generated and notinput as-is? What happens with com-
mands in the stream that do something with the following tokens?

A Lua based solution can look as follows:

\def\Words#1{\directlua O
for s in unicode.utf8.gmatch("#1", "([~ 1)") do
tex.sprint(string.upper(s:sub(1,1)) .. s:sub(2))
end

¥

But there is no real advantage here, apart from the fact that less code is needed. We
still operate on the input and therefore we need to look to a different kind of solution:
operating on the node list.

function CapitalizeWords(head)
local done = false
local glyph = node.id("glyph")
for start in node.traverse_id(glyph,head) do
local prev, next = start.prev, start.next
if prev and prev.id == kern and prev.subtype == 0 then
prev = prev.prev

end

if next and next.id == kern and next.subtype == 0 then
next = next.next

end

if (not prev or prev.id ~= glyph) and
next and next.id == glyph then
done = upper(start)
end
end
return head, done
end

A node listis a forward-linked list. With a helper function in the node library we can loop
oversuch lists. Instead of traversing we can use a regular while loop, butitis probably less
efficient in this case. But how to apply this function to the relevant part of the input? In
LuaTgX there are several callbacks that operate on the horizontal lists and we can use one
of them to plugin this function. However, in that case the function is applied to probably
more text than we want.

The solution for this is to assign attributes to the range of text that such a function has
to take care of. These attributes (there can be many) travel with the nodes. This is also a

The luaTX Mix 203

reason why such code normally is not written by end users, but by macropackage writers:
they need to provide the frameworks where you can plug in code. In ConTgXt we have
several such mechanisms and therefore in MkIV this function looks (slightly stripped) as
follows:

function cases.process(namespace,attribute,head)
local done, actions = false, cases.actions
for start in node.traverse_id(glyph,head) do
local attr = has_attribute(start,attribute)
if attr and attr > O then
unset_attribute(start,attribute)
local action = actions[attr]
if action then
local _, ok = action(start)
done = done and ok
end
end
end
return head, done
end

Here we check attributes (these are set at the TgX end) and we have all kind of actions
that can be applied, depending on the value of the attribute. Here the function that does
the actual uppercasing is defined somewhere else. The cases table provides us a name-
space; such namespaces needs to be coordinated by macro package writers.

This approach means that the macro code looks completely different; in pseudo code
we get:

\def\Words#1{{<setattribute><cases><somevalue>#11}}
Or alternatively:

\def\StartWords{\begingroup<setattribute><cases><somevalue>}
\def\StopWords {\endgroup}

Because starting a paragraph with a group can have unwanted side effects (like \every-
par being expanded inside a group) a variant is:

\def\StartWords{<setattribute><cases><somevalue>}
\def\StopWords {<resetattribute><cases>}

So, what happens here is that the users sets an attribute using some high level command,
and at some point during the transformation of the input into node lists, some action
takes place. At that point commands, expansion and whatever no longer can interfere.

204 The luaTgX Mix

In addition to some infrastructure, macro packages need to carry some knowledge, just
as with the \uccode used in \uppercase. The upper function in the first example looks
as follows:

local function upper(start)
local data, char = characters.data, start.char
if datal[char] then
local uc = datalchar].uccode
if uc and fonts.ids[start.font].characters[uc] then
start.char = uc
return true
end
end
return false
end

Such code is really macro package dependent: LuaTgX only provides the means, not the
solutions. In ConTpXt we have collected information about characters in a data table
in the characters namespace. There we have stored the uppercase codes (uccode).
The, again ConTgXt specific, fonts table keeps track of all defined fonts and before we
change the case, we make sure that this character is present in the font. Here id is the
number by which LuaTgX keeps track of the used fonts. Each glyph node carries such a
reference.

In this example, eventually we end up with more code than in TgX, but the solution is
much more robust. Just imagine what would happen when in the TgX solution we would
have:

\Words{\framed [offset=3pt]{hello world}}

It simply does not work. On the other hand, the Lua code never sees TEX commands, it
only sees the two words represented by glyphs nodes and separated by glue.

Of course, there is a danger when we start opening TgX's core features. Currently macro
packages know what to expect, they know what TgX can and cannot do. Of course macro
writers have exploited every corner of TgX, even the dark ones. Where dirty tricks in the
TeXbook had an educational purpose, those of users sometimes have obscene traits. If
we just stick to the trickery introduced for parsing input, converting this into that, doing
some calculations, and alike, it will be clear that Lua is more than welcome. It may hurt
to throw away thousands of lines of impressive code and replace it by a few lines of Lua
butthat's the price the user pays for abusing TgX. Eventually ConTeXt MkIV will be a decent
mix of Lua and TgX code, and hopefully the solutions programmed in those languages are
as clean as possible.

The luaTX Mix 205

Of course we can discuss until eternity whether Lua is the best choice. Taco, Hartmut and
| are pretty confident that it is, and in the couple of years that we are working on LuaTgX
nothing has proved us wrong yet. We can fantasize about concepts, only to find out that
they are impossible to implement or hard to agree on; we just go ahead using trial and
error. We can talk over and over how opening up should be done, which is what the
team does in a nicely closed and efficient loop, but at some points decisions have to be
made. Nothing is perfect, neither is LuaTgX, but most users won't notice it as long as it
extends TEX's live and makes usage more convenient.

Users of TEX and MetaPost will have noticed that both languages have their own grouping
(scope) model. In TgX grouping is focused on content: by grouping the macro writer (or
author) can limit the scope to a specific part of the text or keep certain macros live within
their own world.

.1. \bgroup .2. \egroup .1.

Everything done at 2 is local unless explicitly told otherwise. This means that users can
write (and share) macros with a small chance of clashes. In MetaPost grouping is available
too, but variables explicitly need to be saved.

.1. begingroup ; save p ; path p ; .2. endgroup .1.

After using MetaPost for a while this feels quite natural because an enforced local scope
demands multiple return values which is not part of the macro language. Actually, this is
another fundamental difference between the languages: MetaPost has (a kind of) func-
tions, which TgX lacks. In MetaPost you can write

draw origin for i=1 upto 10 : .. (i,sin(i)) endfor ;
but also:

draw some(0) for i=1 upto 10 : .. some(i) endfor ;
with

vardef some (expr i) =
ifi>4:1i=1-4fi ;
(i,sin(i))

enddef ;

The condition and assignment in no way interfere with the loop where this function is
called, as long as some value is returned (a pair in this case).

In TEX things work differently. Take this:

206 The luaTX Mix

\count0=1
\message{\advance\count0 by 1 \the\countO}
\the\count0

The terminal wil show:
\advance \count O by 1 1

At the end the counter still has the value 1. There are quite some situations like this, for
instance when data like a table of contents has to be written to a file. You cannot write
macros where such calculations are done and hidden and only the result is seen.

The nice thing about the way Lua is presented to the user is that it permits the following:

\count0=1
\message{\directluaO{tex.count[0] = tex.count[0] + 1}\the\countO}
\the\count0

This will report 2 to the terminal and typeset a 2 in the document. Of course this does not
solve everything, butitis a step forward. Also, compared to TEX and MetaPost, grouping is
done differently: there is a 1local prefix that makes variables (and functions are variables
too)localin modules, functions, conditions, loops etc. The Lua code in this story contains
such locals.

In practice most users will use a macro package and so, if a user sees TgX, he or she sees
a user interface, not the code behind it. As such, they will also not encounter the code
written in Lua that deals with for instance fonts or node list manipulations. If a user sees
Lua, it will most probably be in processing actual data. Therefore, in the next section |
will give an example of two ways to deal with xml: one more suitable for traditional TgX,
and one inspired by Lua. It demonstrates how the availability of Lua can resultin different
solutions for the same problem.

an example: xml

In ConTgXt MKlI, the version that deals with pdfTEX and X3IgX, we use a stream based xml
parser, written in TEX. Each < and & triggers a macro that then parses the tag and/or entity.
This method is quite efficient in terms of memory but the associated code is not simple
because it has to deal with attributes, namespaces and nesting.

The user interface is not that complex, but involves quite some commands. Take for in-
stance the following xml snippet:

<document>
<section>
<title>Whatever</title>

The luaTX Mix 207

<p>some text</p>
<p>some more</p>
</section>
</document>

When using ConTgXt commands, we can imagine the following definitions:

\defineXMLenvironment [document]{\starttext} {\stoptext}
\defineXMLargument [title] {\section}
\defineXMLenvironment [p] {\ignorespaces}{\par}

When attributes have to be dealt with, for instance a reference to this section, things
quickly start looking more complex. Also, users need to know what definitions to use
in situations like this:

<table>
<tr><td>first</td><td>...</td> <td>last</td></tr>
<tr><td>left</td><td>...</td> <td>right</td></tr>
</table>

Here we cannot be sure if a cell does not contain a nested table, which is why we need
to define the mapping as follows:

\defineXMLnested[table]{\bTABLE} {\eTABLE}
\defineXMLnested[tr] {\bTR} {\eTR}
\defineXMLnested[td] {\bTD} {\eTD}

The \defineXMLnested macro is rather messy because it has to collect snippets and
keep track of the nesting level, but users don't see that code, they just need to know
when to use what macro. Once it works, it keeps working.

Unfortunately mappings from source to style are never that simple in real life. We usually
need to collect, filter and relocate data. Of course this can be done before feeding the
source to TgX, but Mkll provides a few mechanisms for that too. If for instance you want
to reverse the order you can do this:

<article>
<title>Whatever</title>
<author>Someone</author>
<p>some text</p>
</article>

\defineXMLenvironment [articlel]
{\defineXMLsave [author]}
{\blank author: \XMLflush{author}}

208 The luaTX Mix

This will save the content ofthe author elementand flushitwhenthe endtagarticleis
seen. So, given previous definitions, we will get the title, some text and then the author.
You may argue that instead we should use for instance xslt but even then a mapping is
needed from the xml to TgX, and it's a matter of taste where the burden is put.

Because ConTgXt also wants to support standards like MathML, there are some more
mechanisms but these are hidden from the user. And although these do a good job in
most cases, the code associated with the solutions has never been satisfying.

Supporting xml this way is doable, and ConTgXt has used this method for many years in
fairly complex situations. However, now that we have Lua available, it is possible to see
if some things can be done simpler (or differently).

After some experimenting | decided to write a full blown xml parserin Lua, but contrary to
the stream based approach, this time the whole tree is loaded in memory. Although this
uses more memory than a streaming solution, in practice the difference is not significant
because often in Mkll we also needed to store whole chunks.

Loading xml files in memory is real fast and once it is done we can have access to the
elements in a way similar to xpath. We can selectively pipe data to TEX and manipulate
content using TgX or Lua. In most cases this is faster than the stream-based method. In-
teresting is that we can do this without linking to existing xml libraries, and as a result we
are pretty independent.

So how does this look from the perspective of the user? Say that we have the simple
article definition stored in demo . xm1.

<7xml version ='1.0'7>
<article>
<title>Whatever</title>
<author>Someone</author>
<p>some text</p>
</article>

This time we associate so called setups with the elements. Each element can have its own
setup, and we can use expressions to assign them. Here we have just one such setup:

\startxmlsetups xml:document
\xmlsetsetup{main}{article}{xml:article}
\stopxmlsetups

When loading the document it will automatically be associated with the tag main. The
previous rule associates setup xml:article with the article elementin tree main.
We need to register this setup so that it will be applied to the document after loading:

\xmlregistersetup{xml:document}

The luaTX Mix 209

and the document itself is processed with:
\xmlprocessfile{main}{demo.xml1}{} % optional setup
The setup xml:article can look as follows:

\startxmlsetups xml:article
\section{\xmltext{#1}{/title}}
\xmlall{#1}{!(title|author)}

\blank author: \xmltext{#1}{/author}

\stopxmlsetups

Here #1 refers to the current node in the xml tree, in this case the root element, article.
The second argument of \xmltext and \xmlall is a path expression, comparable with
xpath: /title means: the title elementanchored to the currentroot (#1), and ! (ti-
tle|author) is the negation of (complement to) title or author. Such expressions
can be more complex that the one above, like:

\xmlfirst{#1}{/one/(alphalbeta)/two/text ()}
which returns the content of the first element that satisfies one of the paths (nested tree):

/one/alpha/two
/one/beta/two

There is a whole bunch of commands like \xm1text that filter content and pipe it into
TEX. These are calling Lua functions. This is no manual, so we will not discuss them here.
However, it is important to realize that we have to associate setups (consider them free
formatted macros) to at least one element in order to get started. Also, xml inclusions
have to be dealt with before assigning the setups. These are simple one-line commands.
You can also assign defaults to elements, which saves some work.

Because we can use Lua to access the tree and manipulate content, we can now imple-
ment parts of xml handlingin Lua. An example ofthis is dealing with so-called Cals tables
This is done in approximately 150 lines of Lua code, loaded at runtime in a module. This
time the association uses functions instead of setups and those functions will pipe data
back to TeX. In the module you will find:

\startxmlsetups xml:cals:process
\xmlsetfunction {\xmldocument} {cals:table} {lxml.cals.table}
\stopxmlsetups

\xmlregistersetup{xml:cals:process}

\xmlregisterns{cals}{cals}

210 The luaTpX Mix

These commands tell MkIV that elements with a namespace specification that contains
cals will be remapped to the internal namespace cals and the setup associates a func-
tion with this internal namespace.

By now it will be clear that from the perspective of the user hardly any Lua is visible. Sure,
he or she can deduce that deep down some magic takes place, especially when you run
into more complex expressions like this (the @ denotes an attribute):

\xmlsetsetup
{main} {item[@type='mpctext' or @type='mrtext']l}
{questions:multiple:text}

Such expressions resemble xpath, but can go much further than that, just by adding more
functions to the library.

blposition() > 2 and position() < 5 and text() == 'ok']
b[position() > 2 and position() < 5 and text() upper ('ok')]
b[@n=='03"' or @n=='08"]

b [number (@n)>2 and number (@n)<6]

b[find(text(),'ALS0"')]

Just to give you an idea . .. in the module that implements the parser you will find defi-
nitions that match the function calls in the above expressions.

xml.functions.find = string.find
xml.functions.upper = string.upper
xml.functions.number = tonumber

So much for the different approaches. It's up to the user what method to use: stream
based MKlI, tree based MkIV, or a mixture.

The main reason for taking xml as an example of mixing TgX and Lua is in that it can be a
bit mind boggling if you start thinking of what happens behind the screens. Say that we
have

<?xml version ='1.0'"?>

<article>
<title>Whatever</title>
<author>Someone</author>
<p>some bold text</p>

</article>

and that we use the setup shown before with article.

At some point, we are done with defining setups and load the document. The first thing
that happens is that the list of manipulations is applied: file inclusions are processed first,

The luaTX Mix 211

setups and functions are assigned next, maybe some elements are deleted or added,
etc. When that is done we serialize the tree to TgX, starting with the root element. When
piping data to TgX we use the current catcode regime; linebreaks and spaces are honored
as usual.

Each element can have a function (command) associated and when this is the case, con-
trol is given to that function. In our case the root element has such a command, one that
will trigger a setup. And so, instead of piping content to TgX, a function is called that lets
TEX expand the macro that deals with this setup.

However, that setup itself calls Lua code thatfilters the title and feeds itinto the \section
command, next it flushes everything except the title and author, which again involves
calling Lua. Last it flushes the author. The nested sequence of events is as follows:

lua: Load the document and apply setups and alike.

lua: Serialize the article element, but since there is an associated setup, tell TgX do
expand that one instead.

tex: Execute the setup, first expand the \section macro, butits argumentis a call
to Lua.

lua: Filter title from the subtree under article, print the content to TgX
and return control to TgX.

tex: Tell Lua to filter the paragraphs i.e. skip title and author; since the b ele-
ment has no associated setup (or whatever) it is just serialized.

lua: Filter the requested elements and return control to TgX.
tex: Ask Lua to filter author.
lua: Pipe author's contentto TgX.
tex: We're done.
lua: We're done.

This is a really simple case. In my daily work | am dealing with rather extensive and com-
plex educational documents where in one source there is text, math, graphics, all kind
of fancy stuff, questions and answers in several categories and of different kinds, either
or not to be reshuffled, omitted or combined. So there we are talking about many more
levels of TEX calling Lua and Lua piping to TgX etc. To stay in TgX speak: we're dealing with

212 The luaTpX Mix

one big ongoing nested expansion (because Luacalls expand), and you can imagine that
this somewhat stresses TgX's input stack, but so far I have not encountered any problems.

some remarks

Here | discussed several possible applications of Lua in TgX. | didn't mention yet that be-
cause LuaTgX contains a scripting engine plus some extra libraries, it can also be used
purely for that. This means that support programs can now be written in Lua and that
there are no longer dependencies of other scripting engines being present on the sys-
tem. Consider this a bonus.

Usage in TeX can be organized in four categories:

1. Users can use Lua for generating data, do all kind of data manipulations, maybe read
data from file, etc. The only link with TgX is the print function.

2. Users can use information provided by TgX and use this when making decisions. An
example is collecting data in boxes and use Lua to do calculations with the dimen-
sions. Another example is a converter from MetaPost output to pdf literals. No real
knowledge of TEX's internals is needed. The MkIV xml functionality discussed before
demonstrates this: it's mostly data processing and piping to TeX. Other examples are
dealing with buffers, defining character mappings, and handling error messages, ver-
batim . .. the listis long.

3. Users can extend TgX's core functionality. An example is support for OpenType fonts:
LuaTgX itself does not support this format directly, but provides ways to feed TgX with
the relevantinformation. Supportfor OpenType features demands manipulatingnode
lists. Knowledge of internals is a requirement. Advanced spacing and language spe-
cific features are made possible by node list manipulations and attributes. The alter-
native \Words macro is an example of this.

4. Users can replace existing TgX functionality. In MkIV there are numerous example of
this, for instance all file io is written in Lua, including reading from zip files and remote
locations. Loading and defining fonts is also under Lua control. At some point MkIV
will provide dedicated splitters for multicolumn typesetting and probably also better
display spacing and display math splitting.

The boundaries between these categories are not frozen. Forinstance, support forimage
inclusionand mplib in ConTeXt MkIV sits between category 3 and 4. Category 3 and 4, and
probably also 2 are normally the domain of macro package writers and more advanced
users who contribute to macro packages. Because a macropackage has to provide some
stability it is not a good idea to let users mess around with all those internals, because
of potential interference. On the other hand, normally users operate on top of a kernel

The luaTX Mix 213

using some kind of api and history has proved that macro packages are stable enough for
this.

Sometime around 2010 the team expects LuaTgX to be feature complete and stable. By
that time | can probably provide a more detailed categorization.

214 The luaTX Mix

XYV How o convinez Don anb Hermany 1o use [usTgX

Opps are poeTTy Low THAT Do Kiurs wite, use [WaTRK poR TYESETTING THE NEXT WPDATE OF HE OPUS
MAGNUM, AND ODDS ARE EVEN LOWED THAT HERMANN TAPF WILL USE MPUB poD Metion Nova. Howeven,
THE NEXT EXAMPLE OF comsiiive Merafon D TR MAY DRAW THER INTEREST IV THIS NEW VARIANT:

MeraTgK.

THE PONT USED HERE IS CALLED YUNK’ AND B DestaNED 5Y DoNauD XnUTh. THERE 15 4 NOTE IV THE FILE
THAT SAYS: ‘foNT INSPIRED bY GemaRD AND Manvan Uneer’s vecrunes, fasnuaRy 185, Je vou o'y
NOTIGE IT YET: PUNK IS A RANDOM PONT,

You MAY WONDER WHY WE STARTED LOOKING INTo THIS MASTERPIECE OF FONT DesleN. WELL, THERE ARE A
FEW REASONS:

 We AAWAYS LIKED THIS PONT, BUT AFTER THE DISE OF OUTLINE FONTS IT WAS NOT A NATURAL GANDIDATE
POR USING IN DoCUMENTS. PUN s ALWAYS A €OOD MOTIVE

s« PoR MANY YEARS WE PAVE BEEN SUGEESTING THAT SPECIAL GLYPHS ANDIOD ASPECTS Of TIPESETTING
COULD B REALIZED BY RUNTIME GENERATION Of GRAFHICS, AND WE NEED THIS TESTBED FOR THE (RIENTAL
TEK PRoseCT: [DRIS NEEDS STRETCHABLE INTER-GLYPH CONNECTIONS.

~ TACO LKES USING TRICKY METAPOST BACGKEROUNDS FoR HIS PRESENTATIONS THAT DEMONSTRATE THIS
FLOGRAMMING LANGUAGE,

~ PARTMUT L.OVES TO TWEAK THE BACKEND AND RUNTIME ONT GENEDATION WILL DEMAND SOME EXTENSIONS
TO THE FONT INCLUSION AND LITERAL HANDLERS.

- Brcause flans atrends many TEf conFEReNces TOGETHER wiTH VOLKER S s, HE HAS PROMISED
AIM TO AVOD REPEATING TALK AND PRESENTATION LAYOUTS, AND SO A NEW PDESENTATION STIUE WAS
NEEDED.

To THIS WE CAN ADD AN ALREADY MENTINED MOTIVATION: convinee Do awp Hermany o e LualfY . ..
WHO KNOWS, AND, IF THAT FAIS, MAVDE THEY GAN TEAM UP #OR AN EXTENSIONS TO THIS FONT: MORE STYLE
VARIANTS, PROFER MATH AND THE SULL maNeE of UNIGODE GLYPHs.

Tte PuNK pONT 15 wirTTEN IN MeTAFONT AND THERE ARE MULTIPLE SOURGES. |HESE ARE MERGED INTO ONE
FILE WHIGK IS TO BE PROGESSED USING THE MFPLAIN PORMAT. DEPINITIONS OF CRADACTERS IN THIS FONT
Lok LIKE:

peaipimecHaR (AY 819
AR F(15U,0) ;202 (Gwil); 8=p P(W"ISU,M ;
7D 2l ; #D 13 ; DRaw 21+ 79 ~ 3§ ;

How o convinee o anp enmany o use Lualgl 215

4 = pp 3zl 5 28 = e 36820
PD 7k ; PD 25 ; DRaw 74 ~ 1
ENDCHAR ;

Vien TRX Negps A sONT, 16, WHEN We HAVE SOMETHING UKE THS:
\ponTlsomeroNTEWHATEVER AT RPT

w ConTEXT CONTROL IS DELEGATED To A FONT LoADER WRITTEN IN LUs THAT 15 Hooked wro TeX. Ths
LOADER INTERFRETS THE NAME AND I NEEDED pILTERS THE SPECIFIGATION FROM [T, | AINK Of THS:

\ponir \someronT=wriaTevERRSMALLCAPS AT e

THB MEANS: LoAD SONT WHATEVER AND ENABLE TRE SMALLCAPS PEATURES. HOWEVER THIS MECHANSM IS
MOSTLY QEARED TOWARDS TYPE] AnD OPENTYPe pons, BuT punk 15 NerrreR: 1rs 4 Memafonr, D we need
T0 TREAT IT AS sUCH. We Wil Usé LUATE’S #OWERFUL VIRTUAL FONT TEGHNOLOGY BECAUSE THAT WAY
WE CAN SMUGELE THE FROPER SHAPES IN THE FINAL #ILE. AND ... NO BITMAPS AND NO PUNNY ENGODING.

v ConTRXT Ml THERE IS A PRELMINARY VIRTUAL #ONT DEPINTTION MECHANISM. THERE IS NO ADVANCED
TR WreRpacE YeT so we NggD 0 Do I IV [Ua, ForTUNATELY WE Do HAVE Acof3s 7o THIS PROM THE
FONT MECHANSME:

Iponr\somerontMyPuNkRPuNG AT et

THIS 15 A RATHER VAUD DIDECTIVE TO CDEATE A PONT THAT INTERNALLY WILL BE CALLED MPUNK. FOR
THIS THE VIRTUAL PONT CREATION COMMAND PUNK WILL BE USED, AND IN A MOMENT WE WILL SEE WHAT THIS
TRIGEERS,

O COURSE, USERS WILL NEVER SEE SUCH LOW LEVEL DEFINITIONS. THEV WILL USE PROPER TYPESCRIFT, WHICK
SET Up A WHOLE FONT SYSTEM, POR INSTANCGE, IN THIS DOCUMENT WE USE:

IstanTTYPESCRIPT [56RIF] [punid DepALLT]
IseTUPS PONTFALBACK SERIE]
\pesineponTsYNoNYM © eRie) DevoRPunkd

IsTOPTYPESCDIT

\sTanrTvPEscRpT P
\DepivETYPEFACE PuN] M) BeRir] Punic] DerauL)
\STOPTYFEScRIFT

% &Np oF DEFS

\useryrescRipt Fusk]

76 flow o conwmes JJon aND Henmann To Use [UaTEX

IseTuP oD YFONT [, 1pr]

Now7 USING PUNK IN INSELF IS NoT THAT MUCR OF A GHALLENGE, BUT HOW ABOUT UsING MULTIPLE INSTANCES
OF THIS PONT AND THEN TYPESET THE TEXT CHOSING VARIANTS OF A GLY#H AT RANDOM. (B COURSE THIS
WILL HAVE SOME TRADE-ORF IN TERMS 0f RUNTIME. IN THIS DOGUMENT WE USE PUNK AS THE BODYFONT AND
THEREFORE IT CoMES IN SEVERAL stzes, (N HANSs tpToP eENERATING THE GLYPHS TAKES A WHILE:

1S ayprs, 1188 stoops muwriMe, SB eLyprs BeconD

ForTunaTELY MidV PROVIDES A CAGHING MEGHANEM SO ONGE THE PONTS ARE GENERATED, A NEXT RUN WILL
BE MORE COMPORTABLE. [HB TIME WE GET REPORTED:

0187 seconps, 48 wstances, SUBSh insTANCES/SECOND

WHCH IS NOT THAT BAD FOR LOADING 40 ries OF § MEGABYTES PDF LITERALS EACH. [HE REASON WHY THE
PILES ARE LARGE IS THAT ALTHOUGH THESE QUYFHS LOOk SIMPLE, IN FACT THEV ADE RATRER COMPLEX: £ACK
GLYPH AT LEAST ONE PATHS AND SEVERAL KNOTS, AND SINGE A SPECIAL PEN IS USED, cONVERSION DESULTS
IN A LARGER THAN NORMAL DESCRIFTION OF A SHAFE.

SINGE WE USE THE STANDARD coNVERTER $hoM METAToST TO PDP, WE CAN GAIN SOME GENERATION TIME bY
USING A DEDICATED CONVERTER FoR QLYPHS. EVENTUALLY THE MPLID UBDARY MAY EVEN FROVIDE A FROPER
CHADSTRING GENEDATOR SO THAT WE CAN CONSTRUCT RFAL PONTS AT RUNTIME.

S0, HOW Dogs THIS woRk BEHIND THE SCDEENS] JECAUSE WE CAN USE SOME O¢ THE MEGHANISMS AUREADY
poeseNt IN ConTE{T IT 1 NoT EVEN THAT COMPLEX.

c THe #une pID&CTIVE TeLLS (oNTRXT TO CREATE A VIRTUAL FONT. SUGH A FONT GAN BE MADE OUT OF
DEAL FONTS; WE USE THIS POR INSTANGE N THE PONT fEATURE COMBINE, WHERE WE ADD VIDTUALLY
GOMPOSED CHARAGTERS THAT ARE MISSING BY COMPINING GHARACTERS FRESENT. HOWEVER, HERE WE
BAVE No REAL FONT.

~ AND S0 THIS VIRTUAL FONT IS NOT BULD ON ToP OF AN EXISTING FONT, BUT SPAVINS A MPLIS PROCESS
THAT WILL BULD THE FONT, UNLESS [T |5 PRESENT IN THE CACHE ON DISK. |HE SHAPES ADE CONVERTED
TO PDF LITERALS AND FOR BACH CPADACTER A #ROPER DEFINITION TABLE IS MADE.

~ N ToTAL 10 SUCH FONTS ARE MADE, BUT ONLY ONE IS DETUDNED TO THE FONT CAUBACK THAT ASKED
US TO PROVDE THE FONT. [HE UST oF THE ALTERNATIVES 15 STORED IN THE [UA TABLE THAT
REPRESENTS THE FONT AND KEPT AT THE [lA €D, So, rOD €Ach SIE USED, A UNQUE SET of 1)
VARIANTS IS GENERATED.

«+ THE RANDOMIZER OFEDATES ON THE NODE LIST. INSTEAD oF USING A DEDIGATED MECRANSM fOR TH,
WE HUACK ONE OF THE ATTRIBUTE VALUES OF THE CASE SWAPTER ALDEADY PReSENT IN MV, Arrer
THAT WE CAN SELECTIVELY TURN ON AND ofF THE RANDOMIZLER.

How o convinee o anp Henmann o use Lual 27

=~ Kr somé poir TH wiw HAND OveR THE NoDE ST TO ToNTERT. Ar THAT MOMENT A 10T oF THINGS
CAN HAPPEN TO THE LIST, AND ONE OF THEM IS A SEQUENCE OF GHARACTER HANDUERS, OF WHICH THE
MENTIONED CASE HANDLER 15 ONE. THE HANDLER SWEEPS OVER THE NODELST AND FOR EACH GLYPH NODE
TRIGSEDS A PUNGTION THAT IS BOUND TO THE ATTRBUTE VALUE,

~+ THIS FUNCTION B RATHER TRIVIAL: IT LoOKS AT THE #ONT DD of THE GLY#H, AND RESOLVES IT TO
THE FONT TABLE. [¢ THAT TABLE HAS A UST OF ALTERMATIVES, IT WILL RANDOMLY CHOOSE ONE AND
ASSIGN IT TO THE FONT ATTDIBUTE OF THE GLYPH, THATS ALL.

-~ BVENTUAULY THE BAGKEND DoUTINES WILL INJECT THE PDF UTERALS THAT WERE COLLECTED IN THE
COMMANDS TABLE OF THE VIRTUAL GLYPH

IT WILL NOT COME AS A SURPRISE THAT oUR RESULTING FILE B LARGER THAN WHAT WE GET WHEN usN
TRADITIONAL OUTLINE FoNTS OR JUST ONE INSTANCE OF PUNK. HoWEVER, THIS B JUST AN EXPERIMENT, AND
EVENTUALLY A PROPER FONT CONSTRUGTOR WILL bE #ROVIDED, SO THAT THE GLYPH DRAWING IS DELEGATED
TO THE PONT RENDERER. AN INTERMEDIATE of TIMIZATION CAN BE 0 USE So GALLED FDF XfoRMS, BUT A
PROFERLY RUNTIME GENERATED FONT IS BEST BECAUSE THEN WE CAN SEARCH IN THE FILE TOO.

BecatBE by Now READING THE PUNK FONT SHOUWD €0 FLUENTLY WE CAN NoW MOVE oN T0 ThE CODE. Vk
ALREADY BAVE A FONTS NAMESPAGE, WHICH WE NOW €XTEND WitH AN MerafesT stb NamesPace:

FONTSMP = PONTSMP OR € 3

We SET A VERSION NUMBER AND DEPINE A GACHE ON Disk. WHEN THE NUMBER CHANGES PONTS STORED IN THE
CACHE WILL BE REGENERATED WHEN NEEDED. THE CONTAINERS MODULE PROVIDES THE DELEVANT £UNCTION.

poNTSMevEDSION = {01
PONTSMP CACHE = GONTAINEDS DEFINE(PONTS”, "M, BONTS MPVERSION, TRUE)

We ALREADY HAVE A METAFOST NAMESFACE, AND WITHIN IT WE DEFINE A SUD NAMESPAGE:
METAFOST.CHARACTERS META#(ST.CHARACTERS oR & 3

Now weRE READY FOR THE REAL AGTION: WE DEPINE A DEDICATED FLUSHED THAT WILL BE PASSED TO THE
MeralesT conveRTER. A NEXT VERSION Or MPLID WILL PROVIDE THE TeM fONT INFORMATION WHIGH GIVES
BETTER GLYPH DIMENSIONS, PLUS ADDITIONAL KERNING INFORMATION. At THIS GODE IS DEPINED IN A CLOSURE
(DO .. END) WRICH NCELY FIDES TRE L0CAL VARIABLES.

LOCAL, CHARACTERS, DESCRIPTIONS = £ 3, € 3
LOCAL PAGTOR, ToTAL, VARIANTS = 114, §, 4
Lot t, Nw, H, D =£30,0,0,0

1YY

LOCAL PLUSHER = &

7 flow To convines Jon AND Tenmann To Use [uaTEX

STARTPIGURE = PUNCTION(CHRNUM,ULX LY JRY JDY)
L, N =43, cHRNUM
W, B, D % URX “ LLX, URY, “LLY
ToTAL = ToTAL + 1
END,
FLUSHPIGURE = FUNCTION(T)
eoR Fl, #r Do
L) = T0)
£ND
END,
STOPPIEURE = FUNCTIOND
LCAL GD * CRARACTERSDATAN
DEscRIeTIoNs] = £
UNICODE = N,
NAME = CD AND GDADOBENAME,
woTH = Wi,
peteT = HA,
pepTH = DAY,
3
sarpcTeRsll = {
COMMANDS = §
£ fseecu, Yepe: ™ . TAsLECONGAT(L) 3,
3
3
END
3

N THE NORMAL CONVERTER, THE START AND STOr #UNCTION DO THE PACKAGING IN A BOX. [HE FLUSH FUNGTION
B CAUED WHEN UTERALS NEED TO B PLUSHED |HIS THREESOME DOES AS MUCH AS COLLECTING eLYFH
INFORMATION IN THE LIST TABLE. NTERMEDUTE UTERALS ARE STORED IN THE U TABLE FAGH aLYPH HAS A
DESCRIPTION AND (IN THIS GASE) ONE COMMAND THAT DEFINES THE VIRTUAL SHAPE THE NAME IS PICKED P
FROM THE CHARACTER DATA TABLE THAT Is rREsent IN Mic[V.

ls TolD BEFORE WE GENERATE MULTILE INSTANCES PER REQUESTED FONT AND HEDE B HOW IT HAPPENS,
WE INTIALIZE THE MPPLAIN PORMAT AND RESET IT APTERWARDS. [HE FUNK DEFINITION FILE IS ADAPTED OR
MULTIPLE RUNS. SCALING HAPPENS HEDE DECAUSE tATER ON THE SCALER PAS No KNOWLEDGE ABOUT WHAT 5
PRESENT IN THE cOMMANDS. VE USE A ¢EW HELPERS fOR PROCESSING THE METAPOST CODE AND FORMAT
THE PINAL FONT TABLE IN A WAY CoTRCT MidV Likes. CURDENTLY THE FARAMETERS (FONT DIMENSIONS) ARE
RATHER HARD CODED, BUT THIS WILL CHANGE WHEN MPLB CAN FROVIDE THEM.

How o conwinee Don anp Henmany To tse [ualgl 28

PUNCTION METAPOST GHARACTERS PROCESS(MPXPODMAT, NAME, INSTANCES, SCALEFACTOR)

STATISTICS STARTTIMING(MET AP ST CHARACTERS)
SGALEFACTOR = SCALESACTOR OR 1
ISTANGES = INSTANGES oR 1)
LOCAL PONTNAME = FILEREMOVESUPPIX(PILEsASENAME(NAVE))
LOCAL HASH * FILEROFUSTNAME(STRING#ORMAT(

Whs 904 YOA", ronTiaME, scaLezacTorMOM, meTANcEs))
LOCAL LIBTS = CONTAINERS READ(FONTs MP CAcHED, HAsH)
I8 NOT USTS THEN

STATISTICS.STARTTIMING(PLUSHER)

LOCAL DATA = 10.LOADDATA(NPUT SIND_FILE(NAME))

METAPOST RESET(MrXPORMAT)

1eTs = £ 3

gor ¥ NsTANCES DO

CHARACTERS, DESCRIPTIONS = £ 3
METAPOST PROGESS(
MFXFORMAT,
£
Ravponsesp = ¥ R L EE
"SCAVE_FACTOR = * . SCALEFACTOR .. * ¥,

DATA
3
PALSE,
FLUSHER
)
usTsFusTst] = £
pesiense = S35,
MM = STRINgFonwaT (s 08t past),
PARAMETERS = §
SLANT s 6,
SeACE = 88 R scaLERACTOR,
sPACE_sTRETGH = 1S ® scatepacToR,
space_sHRINK = M1 R seaussacToR
X HeEeHt = 431 R scaLEmacTOR,
QUAD =00 K scaLepacTom,
EXTRA_SPACE = b
3

:

Pryee) = Vinrual®,
CHARACTEDS = CPADACTESS,
DESCRIPTIONS ¥ DESCDIPTIONS,

20 flow o convinet on aND Tlenmann 1o st LuaTRK

3
END
METAPOST RESET(MPXFORMAT) ++ SAVES MEMORY
LSTS = cONTAINERSWRITECFONTS Me CACHE), HASH, LISTS)
STATISTICS SToPTIMINGELUSHER)
END
VARINTS = VARIANTS + #risTS
STATISTICSSTOPTIMING(MET AP OST GRARAGTERS)
RETURN LISTS
END

Welne Not YET THERE. THIS WAS JUST A SONT GENERATOR THAT RETURNS A LIST OF FONTS DEFINED I
A pORMAT LIKED bY MV AxD NOT THAT AR FROM WHAT TEK wANTS BACK PROM US. NEXT WE DerINg
THE MAIN DEFINITION FUNGTION, THE ONE THAT IS CALLED WREN THE PONT IS DEPINED AS VIRTUAL rONT. THE
speCIAL nuMsED <100 TELLS THE SCALER TO HONOUR THE DESIGNSIZE, WHICH BOLLS DOWN TO NO SGALING,
BUT JUST GOPYING TO THE FINAL TABLE THAT Is PASSED 10 TeA. THE DEFING SUNCTION RETURNS AN ID WHIGH
WE WILL USE LATER

THE SCALER USES THE DESCRIPTIONS To ADD DIMENSIONS (AND OTHER DATA NEEDED) IN THE CHARACTERS
TABLE. THIS 15 someTHING MV specirte.

FUNCTION FONTSN P AUX.COMBINE. COMMANDS METAPONT(G,V)
LOCAL SILE = GSPECIFICATIONSIZE
LOCAL DATA = METAPOST CHARACTERS FRocESS(Vy Bly] sre/65S30)
ocAL 15T, T= €3, €3
#0R D=LFDATA DO
T = DATAD]
T = FONTSTEMSCALE(T, “1000)
TID = PoNT DerINg(T)
ustlusTH) = T
END
POR &, V IN PARS(T) DO
6] = v ~ KIND OF REPLACE, WHEN NOT PRESENT, MAKE NI
END
QUARIANTS = LIST
END

We Hook TS Wr0 e CONTEKT PONT HANDUER AND FROM Now ON THE WPUNK B RECORNIED:

poNTs DEPINEMETHODS IBTALC Pum”, € € MueTasonT”, MvprLan”, MrungeonTar”™, 10 3 3)

How o convive on anp Henwann To tse [l 221

Now THAT WE CAN DEFINE THE FONT, WE NEED TO DEAL WITR THE RANDOMIZER. THB 1 oPTIONAL #UN. THE
MENTIONED CASE SWAPPERS ARE WMPLEMENTED IN THE CASES NAMESPACE:

LOCAL FONTDATA = FONTS.IDS

casesacTions(] = puncTION(CURRENT)
LOCAL C = GURRENT.GAR
LOGAL USED = #ONTDATACURRENT SONT]VARIANTS
v USED THEN
LocAL F = MATRRANDOM({Fusep)
GURRENT FONT = UsED[p]
RETURN GURRENT, TRUE
Else
RETURN CURRENT, FALSE
BND
END

TRIS FUNCTION S CALLED IN ONE OF THE FASSES OVED THE NODE UST. |HAMCS TO THIS FRAMEWORK WE
DON'r NEED THAT MUCH coDe. We DIDNT SHOW TWO STATISTICS SUNCTIoNS, THEY ARE THE REASON WHY
WE KEEP TRACK Of THE TOTAL NUMBER Of GLY#HS DEFINED.

THIS LEAVES US DEFINING THE INTERPAGE, SO HERE VIE &0:

\Deeb TARTR anpoMP it \pecivaroup lseT crARA cTERCASING I3
DerlSrorRamboml e £lEpeRoues

THE SET COMMAND JUST SETS THE ATTDUBUTE THAT WE ASSOCATED WITH CASNG (ONE OF THE MANY
ATTRIBUTES). THE NUMDED 19 15 RATHER ARBITRARY.

e vou poLLow THE DeveLobuenT o LUATRK AN MilV (We Do TAIXS AT cONSERENGES, KeEP TRAGK OF
THE DEVELOPMENT RISTORY IN MKFDF, AND REPORT on THE ConTENT MAILING LIST) YOU WILL HAVE NoTIced
THAT WE OFTEN USE SOMEWRAT EXTREME £XAMPLES TO £XPLORE AND TEST THE FUNGTIONALITY AND THIS
15 NO EXGEPTION. AS USUAL If HELPED US To IMPROVE THE CODE AND EXTEND OUR ToDo wuST. (AN ThE
FREVIOUS GODE CONVINGE THE GRAND WIZARDS T0 START Using LUATENY ProbabLY Not, LeT’s ANYWAY Hope
THAT THEY WILL PUT THE ADDITION 0F #UNK MATH TO THEID TODO LBT. [N THE MEANTIME WE'VE ALREADY
STARTED ADDING MISSING CHARACTEDS:

21 £y vy gy 1Ry £018)

hiso, BECAUSE WE CAN b SURE THAT Mosca MicLAVEGS FIRST TEST WILL BE If HER FAVOURITE CRARACTERS
S, ¥ AND I ARE SUPPORTED, WE MADE SURE THAT WE (OMrOSED THOSE ACGENTED GHARACTERS AS WELL

THIS 1S ACCOMPLISHED BY ADDING FONTS VF ALK CoMPOSE,_CHARACTEDS(T) AT AN UNDISCLOSED LOGATION IN THE PREVIOUS (ODE.

22 fow o convivet [Jon anp flenman To st [ualil

XXV Openlype: too open?

In this chapter | will reflect on OpenType from within my limited scope and experience.
What I'm writing next is my personal opinion and | may be wrong in many ways.

Until recently installing fonts in a TgX system was not something that a novice user could
do easily. First of all, the number of files involved is large:

e Ifitis a bitmap font, then for each size used there is a pk file, and this is reflected in
the suffix, for instance pk300.

e Ifitisan outline font, then there is a Type1 file with suffix pfb or sometimes glyphs are
taken from OpenType fonts (with ttf or otf as suffix). In the worst case such wide
fonts have to be splitinto smaller ones.

e Because TgX needs information about the dimensions of the glyphs, a metric file is
needed; it has the suffix tfm. There is limit of 256 characters per font.

e |Ifthefontlacks glyphsitcan be turned into avirtual fontand borrow glyphs from other
fonts; this time the suffix is vf.

e Ifnosuch metricfile is present, one can make one from afile that ships with the fonts;
it has the suffix afm.

e In order to include the font in the final file, the backend to TgX has to match glyph
references to the glyph slots in the font file, and for that it needs an encoding vector,
for historical reasons this is a PostScript blob in a file with suffix enc.

e This whole lot is associated in a map file, with suffix map, which couples metric files
to encodings and to font files.

Of course the user also needs TgX code that defines the font, but this differs per macro
package. If the user is lucky the distributions ships with files and definitions of his/her
favourite fonts, but otherwise work is needed. Font support in TgX systems has been
complicated by the facts that the first TEX fonts were not ascii complete, that a 256 limit
does not go well with multilingual typesetting and that most fonts lacked glyphs and de-
manded drop-ins. Users of ConTgXt could use the texfont program to generate metrics
and map file for traditional TgX but this didn't limit the number of files.

In modern TgX engines, like X3TEX and LuaTgX, less files are needed, but even then some
expertise is needed to use Type1 fonts. However, when OpenType fonts are used in com-
bination with Unicode, things become easy. The (one) fontfile needs to be putin a loca-
tion that the TgX engine knows and things should work.

OpenType: too open? 223

In LuaTeX with ConTeXt MKIV supportfor traditional Type1 fonts is also simplified: only the
pfb and afm files are needed. Currently we only need tfm files for math fonts but that
will change too. Virtual fonts can be built at runtime and we are experimenting with real
time font generation. Of course filenames are still just as messy and inconsistent as ever,
so other tools are still needed to figure out the real names of fonts.

So, whatis this OpenType and will it really make TgXies life easier? The qualification ‘open’
in OpenType carries several suggestions:

e theformatis defined in an open way, everybody can read the specification and what
is said there is clear

e the formatis open in the sense that one can add additional features, so there are no
limits and/or limits can be shifted

e there is an open community responsible for the advance of this specification and
commercial objectives don't interfere and/or lead to conflicts

Is this true or not? Indeed the format is defined in the open although the formal specifi-
cation is an expensive document. A free variant is available at the Microsoft website but
it takes some effort to turn that into a nicely printable document. What is said there is
quite certainly clear for the developers, but it takes quite some efforts to get the picture.
The format is binary so one cannot look into the file and see what happens.

The key conceptis ‘features’, which boils down to a collection of manipulations of the text
stream based on rules laid down in the font. These can be simple rules, like ‘replace this
character by its smallcaps variant’ or more complex, like ‘if this character is followed by
that character, replace both by yet another’. There are currently two classes of features:
substitutions and (relative) positioning. One can indeed add features so there seem to
be no limits.

The specification is a hybrid of technologies developed by Microsoft and Adobe with
some influence by Apple. These companies may have conflicting interests and therefore
this may influence the openness.

So, in practice we're dealing with a semi-open format, crippled by a lack of documen-
tation and mostly controlled by some large companies. These characteristics make that
developing support for OpenType is not that trivial. Maybe we should keep in mind that
this font format is used for word processors (no focus on typography), desk top publish-
ing (which permits in-situ tweaking) and rendering text in graphical user interfaces (where
scriptand language specific renderingis more importantthan glyph variants). Depending
on the use features can be ignored, or applied selectively, of even compensated.

Anyhow, a font specification is only part of the picture. In order to render it useful we
need supportin programs that display and typeset text and of course we need fonts. And
in order to make fonts, we need programs dedicated to that task too.

224 Openlype: too open?

Let's go back for a moment to traditional TgX. A letter can be represented by its standard
glyph or by a smallcaps variant. A digit can be represented by a shape that sits on the
baseline, or one that may go below: an oldstyle numeral. Digits can have the same
width, or be spaced proportionally. There can be special small shapes for super- and
subscripts. In traditional TgX each such variant demanded a font. So, say that one wants
normal shapes, smallcaps and oldstyle, three fonts were needed and this for each of the
styles normal, bold, italic, etc. Also a font switch is needed in order to get the desired
shapes.

In an OpenType universe normal, smallcaps and oldstyle shapes can be included in one
fontand they are organized in features. It will be clear that this will make things easier for
users: if one buys a font, there is no longer a need to sort out what file has what shapes,
there is no longer a reason for reencodings because there is no 256 limit, map files are
therefore obsolete, etc. Only the TgX definition part remains, and even that is easier be-
cause one file can be used in different combinations of features.

One of the side effects of the already mentioned semi-open character of the standard is
that we cannot be completely sure about how features are implemented. Of course one
can argue that the specification defines what a feature is and how a font should obey it,
but in practice it does not work out that way.

e Nobody forces a font designer (or foundry) to implement features. And if a designer
provides variants, they may be incomplete. In the transition from Type1 to OpenType
fonts may even have no features at all.

e Some advanced features, like fractions, demand extensive substitution rules in the
font. The completeness may depend on the core application the font was made for,
or the ambition of the programmer who assists the designer, or on the program that
is used to produce the font.

e Many of the features are kind of generic, in the sense that they don't depend on
heuristics in the typesetting program: it's just rules that need to be applied. How-
ever, the typesetting program may be written in such a way that it only recognized
certain features.

e Some features make assumptions, for instance in the sense that they expect the pro-
gram to figure out what the first character of a word is. Other features only work well
if the program implements the dedicated machinery for it.

e Features can originate from different vendors and as a result programs may interpret
them differently. Developers of programs may decide only to support certain fea-
tures, even if similar features can be supported out of the box. In the worst case a
symbiosis between bugs in programs and bugs in fonts from the same vendor can
lead to pseudo standards.

Openlype: too open? 225

e Designers (or programmers) may assume that features are applied selectively on a
range of input, but in automated workflows this may not be applicable. Style design-
ers may come up with specifications that cannot be matched due to fonts that have
only quick and dirty rules.

e Features can be specific for languages and scripts. There are many languages and
many scripts and only a few are supported. Some features cover similar aspects (for
instance ligatures) and where a specific rendering ends up in the language, script,
feature matrix is not beforehand clear.

In some sense OpenType fonts are intelligent, but they are not programs. Take for in-
stance the frac feature. When enabled, and when supported in the font, it may result
in 1/2 being typeset with small symbols. But what about a/b? or this/that? In principle
one can have rules that limit this feature to numerals only or to a simple cases with a few
characters. But | have seen fonts that produce garbage when such a feature is applied
to the whole text. Okay, so one should apply it selectively. But, if that's the way to go,
we could as well have let the typesetting program deal with it and select superior and
inferior glyphs from the font. In that case the program can deal with fuzzy situations and
we're not dependent on the completeness of rules. In practice, at least for the kind of
applications that | have for TgX, | cannot rely on features being implemented correctly.

For ages TgXies have been claiming that their documents can be reprocessed for years
and years. Of course there are dependencies on fonts and hyphenation patterns, but
these are relatively stable. However, in the case of OpenType we have not only shapes,
but also rules built in. And rules can have bugs. Because fonts vendors don't provide
automated updating as with programs, your own system can be quite stable. However,
chances are that different machines have variants with better or worse rules, or maybe
even with variants with features deleted.

I'm sure that at some time Idris Samawi Hamid of the Oriental TEX project (related to
LuaTgX) will report on his experiences with font editors, feature editors, and typesetting
engines in the process of making an Arabic font that performs the same way in all systems.
Trial and error, rereading the specifications again and again, participating in discussions
on forums, making special testfonts . . . it's a pretty complex process. If you want to make
a font that works okay in many applications you need to test your font with each of them,
as the Latin Modern and TgX Gyre font developers can tell you.

This brings me to the main message of this chapter. On the one hand we're better of
with OpenType fonts: installation is trivial, definitions are easy, and multi-lingual doc-
uments are no problem due to the fact that fonts are relatively complete. However, in
traditional TgX the user just used what came with the system and most decisions were al-
ready made by package writers. Now, with OpenType, users can choose features and this
demands some knowledge about what they are, when they are supposed to be used (!),
and what limitations they carry. In traditional TEX the options were limited, but now there

226 Openlype: too open?

are many under user control. This demands some discipline. So, what we see is a shift
from technology (installing, defining) to application (typography, quality). In ConTgXt this
has resulted in additional interfaces, like for instance dynamic feature switching, which
decouples features from font definitions.

It is already clear that OpenType fonts combined with Unicode input will simplify TgX
usage considerably. Also, for macro writers things become easier, but they should be
prepared to deal with the shortcomings on both Unicode and OpenType. For instance
characters that belong together are not always organized logically in Unicode, which re-
sults for instance in math characters being (sort of) all over the place, which in turn means
that in TEX characters can be either math or text, which in turn relates to the fonts being
used, formatting etc. Als, macro package writers now need to take more languages and
related interferences into account, but that's mostly a good thing, because it improves
the quality of the output.

It will be interesting to see how ten years from now TeX macro packages deal with all the
subtleties, exceptions, errors, and user demands. Maybe we will end up with as com-
plex font support as for Type1 with its many encodings. On the other hand, as with all
technology, OpenType is not the last word on fonts.

Openlype: too open? 227

228 Openlype: too open?

XXVI It works!

One of the more powerful commands in ConTgXtis \framed. You can pass quite some
parameters that control the spacing, alignment, backgrounds and more. This command
is used all over the place (although often hidden for the user) which means that it also
has to be quite stable. However, there is one nasty bit of code that is hard to get right.
Calculating the height of a box is not that complex: the height that TeX reports is indeed
the height. However, the width of box is determined by the value of \hsize at the time
of typesetting. The actual content can be smaller. In the \framed macro by default the
width is calculated automatically.

\framed
[align=middle,width=fit]
{Out beyond the ethernet the spectrum spreads \unknown}

this shows up as:?

Out beyond the ethernet the spectrum spreads . . .

Or take this quote:*
\hsize=.6\hsize \framed [align=middle,width=fit] {\input weisman }

This gives a multi-line paragraph:

Since the mid-1990s, humans have taken an
unprecedented step in Earthly annals by
introducing not just exotic flora or fauna from one
ecosystem into another, but actually inserting
exotic genes into the operating systems
of individual plants and animals, where
they're intended to do exactly the same
thing: copy themselves, over and over.

Here the outer \hsize was made abitsmaller. Asyou can see the frame is determined by
the widest line. Because it was one of the first features we needed, the code in ConTgXt
that is involved in determining the maximum natural width is pretty old. It boils down
to unboxing a \vbox and stepwise grabbing the last box, penalty, kern and skip. You
unwind the box backwards. However, you cannot grab everything or in TEX speak: there
is only a limited number of \1astsomething commands. Special nodes, like whatsits

* Taken from ‘Casino Nation’ by Jackson Browne.
* Taken from ‘A World Without Us’ by Alan Weisman.

[t works! 229

cannot be grabbed and they make the analyzer abort its analysis. There is no way that we
can solve this in traditional TeX and in ConTpXt MklI.

So how about LuaTgX and ConTgXt MkIV? The macro used in the \framed commands is:
\doreshapeframedbox{do something with \box\framebox}

In LuaTeX we can manipulate box contentatthe Lualevel. Instead of providing a truckload
of extra primitives (which would also introduce new data types at the TgX end) we just
delegate the job to Lua.

\def\doreshapeframedbox
{\ctxlua{commands.doreshapeframedbox (\number\framebox) }}

Here \ctxluaisourreserved instance and commands provides the namespace for com-
mands that we delegate to Lua (so, there are more of them). The amount of Lua code is
way less than the TgX code which we will not show here; it'sin supp-box. tex ifyou really
want to see it.

function commands.doreshapeframedbox(n)
if tex.wd[n] ~= O then
local hpack = node.hpack
local free = node.free
local copy = node.copy_list
local noflines, lastlinelength, width = 0, 0, O
local list = tex.box[n].list
local dome false
for h in node.traverse id('hlist',list) do
done = true
local p = hpack(copy(h.list))
lastlinelength = p.width
if lastlinelength > width then
width = lastlinelength

end
free(p)
end
if done then
if width ~= 0 then
for h in node.traverse_id('hlist',list) do
if h.width ~= width then
h.list = hpack(h.list,width, 'exactly"')
h.width = width
end
end

230 Itworks!

end
tex.wd[n] = width
end
-- we can also do something with lastlinelength
end
end

In the first loop we inspect all lines (nodes with type hlist) and repack them to their
natural width with node . hpack. In the process we keep track of the maximum natural
width. In the second loop we repack the content again, but this time permanently. Now
we use the maximum encountered width which is forced by the keyword exactly. Be-
cause all glue is still present we automatically get the desired alignment. We create local
shortcuts to some node functions which makes it run faster; keep in mind that this is a
core function called many times in a regular ConTgXt job.

In ConTgXt MkIV you will find quite some Lua code and often it looks rather complex,
especially if you have no clue why it's needed. Think of OpenType font handling which
involves locating fonts, loading and caching them, storing features and later on applying
them to node lists, etc. However, once we are beyond the stage of developing all the
code that is needed to support the basics, we will start doing the things that more relate
to the typesetting processitself, like the previous code. One ofthe candidates forasimilar
Lua based solution is for instance column balancing. From the previous example code
you can deduce that manipulating the node lists from Lua can make that easier. Of course
we're a few more years down the road then.

It works! 231

232 Itworks!

XXVII Virtual Reality

When a font lacks glyphs we can add new ones by making the font virtual. A virtual font
has virtual glyphs: instead of a reference to a slot in the current font, such a glyph refers
to a slot in another font, or it combines several glyphs into one, or it just contains code
that ends up in the result (for instance a sequence of pdf commands that describes the
shape). For TgX a character and its dimensions are what matters and what ends up in the
result is mostly a matter for the backend. In LuaTgX the backend is integrated but even
then during the typesetting process only the characteristics of a glyph are used and not
the shape.

In ConTgXt we have a feature called ‘compose’ which extends the font with extra charac-
ters and constructs its representation from those of other characters.

\definefontfeature
[composes]
[kern=yes,ligatures=yes, compose=yes]

When this feature is applied, ConTgXt will try to fill in the gaps in the Unicode vector of
the font based on for instance (de)composition information. Of course this has some lim-
itations. For instance OpenType fonts can ships with features, like smallcaps. Currently
we ignore this property when we add composed characters. Technically it is no big deal
to add variants but we simply didn't do it yet at the time of this writing. After all, such
fallbacks can best be avoided by using proper fonts.

Our ConTgXt MkIV wishlist mentions a mechanism for combining fonts into one font. For
this we can use virtual fonts and the machinery for that is in available in Lua code. How-
ever such a mechanism will be used for more drastic completion of a font than the com-
pose feature. For instance, often Chinese fonts lack proper Latin glyphs and vise versa.
But when we combine such fonts we really do want to keep OpenType features working
and so we cannot use virtual fonts (unless we start merging features which can become
really messy and runtime consuming).

There is a relative simple solution using real fonts that kind of behave like virtual ones:
virtual real fonts. The trick is in the fact that TEX permits access to characters not present
in the font. Say that we have

<char 123><char 124><char 125>

and that slot 124 has no glyph. In that case TgX just inserts a glyph node with a reference
to the current font and this character. Of course, when we let TgX carry on, at some point

it will need glyph properties like the width, height and/or depth. And in the backend,

Virtual Reality 233

when writing the result to file, TEX wants to insert the glyph data in the file. In both cases
we end up with a message in the log file and a result file with missing data.

In ConTeXt MKIV we intercept the node lists at several points and one of those is directly
after the construction. So let's consider the previous example again.

Because the font has no character 124 we need a way to substitute it with another charac-
ter. All we have to do is to change the font identifier 32 into one that makes sense. Such
areplacement loop is kind of trivial.

for n in traverse_id(glyph,head) do
local v = vectors[n.font]

if v then
local id = v[n.char]
if id then
n.font = id
end
end
end

We have atable (vectors)that can have a subtable (v) for font with id (n. font) in which
there can be areference from the current character (n. char) to anotherfont (id) that we
use to replace the font reference (n. font).

Filling the table is relatively easy but an explanation is beyond this chapter. We only show
the high level interface, one that certainly will evolve.

\definefontfallback
[SerifFallback]
[Mono]

[0x000-0x3FF]
[check=yes,force=no]

This command registers an entry in the SerifFallback namespace. There can be mul-
tiple replacement in row (by just using more of these commands), but here we have only
one. The range oxoo00-0x3FF will be checked and if the main font lacks a glyph in that
range, it will be taken from the font with the symbolic name Mono. That name will be re-
solved when the fallback is associated with a font. The check option tells the machinery
that we need to check for existence and because we don't force, we will only replace
missing glyphs. There is also an rscale option, that permits relative scaling of the fall-
back font to the main font, something that may be needed when fonts come from differ-
ent sources.

234 Virtual Reality

\definefontsynonym
[SerifPlus]
[Serif]
[fallbacks=SerifFallback]

This command associates a fallback with a font. There is always a parent font and that is
the font that triggers the checking of the node list.

\definefont [MySerif] [SerifPlus at 10pt]

Here we defines a font called \MySerif that refers to a symbolic name SerifPlus
whichinturn refers to the current Serif font (these symbolic names are resolved in type-
scripts, one of the building blocks of ConTgXts font system). The mentioned fallbacks will
be initialized when the font is defined. This examples demonstrates that there is a clean
separation between font definitions and fallbacks. This makes it possible to share fallback
definitions.

So, let's summarize what happens:

afont is defined in the normal way but has falbacks
the associated fallback fonts are defined too

the main font gets a table with fallback id's

the main font is used in the document stream

the node list is intercepted and parsed for this font
references to fallback fonts take care of missing glyphs

We end with an example.

\definefontfallback [Demo] [Mono] [0x30-0x39] [force=yes]
\definefontsynonym [DemoSerif] [Serif] [fallbacks=Demo]

\definefont [MyDemoSerif] [DemoSerif at 20ptl]

\MyDemoSerif Here the digits, like 13579, are replaced.

Here the digits, like 13579, are replaced.

Beware: the fallback definitions are global, but this is hardly a problem because normal
such trickery is taking place at the document level.

Virtual Reality 235

236 Virtual Reality

XXVIII Getting lost

\setupdirections[bidi=off]

LATTN BARA
BARA LATIN
LATIN ARAB
LATIN ARAB

BARA NITAIL
BARA NTTATI

LATIN &4

NITAL &4
LATIN &4
NITAL &4
LATIN &4
NITAL £J

\textdir
\textdir
\textdir
\textdir
\textdir
\textdir

\setupdirections[bidi=globall]

LATTN BARA

LATIN A&

\textdir

TLT\relax \LATIN \ \ARAB
TRT\relax \LATIN \ \ARAB
TLT\bidilro \LATIN \ \ARAB
TRT\bidilro \LATIN \ \ARAB
TLT\bidirlo \LATIN \ \ARAB
TRT\bidirlo \LATIN \ \ARAB

TLT\relax \LATIN \ \ARAB

LATIN o& \textdir TRT\relax \LATIN \ \ARAB
\textdir TLT\bidilro \LATIN \ \ARAB

\textdir TRT\bidilro \LATIN \ \ARAB

f¥TIBIer3

L& NITAL

\textdir

\setupdirections[bidi=locall]

BARA TATIN

L& NITAIl \textdir TLT\bidirlo \LATIN \ \ARAB

TRT\bidirlo \LATIN \ \ARAB

LATIN & \textdir TLT\relax \LATIN \ \ARAB
\textdir TRT\relax \LATIN \ \ARAB
\textdir TLT\bidilro \LATIN \ \ARAB

\textdir TRT\bidilro \LATIN \ \ARAB

LATIN &

L& NITAL

L& NITALl \textdir TLT\bidirlo \LATIN \ \ARAB

\textdir TRT\bidirlo \LATIN \ \ARAB

Getting lost

237

\start \textdir
four \bidipop five \par
\StartFakeArab \textdir
four \bidipop five \par
\start \textdir
four \bidipop five \par
\StartFakeArab \textdir
four \bidipop five \par

one two eerht four five
one two eerht four five
one two eerht four five

one two eerht four five

TLT one \bidilro two
\stop

TLT one \bidilro two
\StopFakeArab

TRT one \bidilro two
\stop

TRT one \bidilro two
\StopFakeArab

\setbreakpoints [compound]

\hyphenation{aaa-bbb-ccc-ddd}

\hsize 3mm aaabbbcccddd

aaa-
bbb-
ccc-

ddd

aaa-
bbb-
ccc-
ddd-
aaa-
bbb-
ccc-
ddd
aaa-
bbb-
ccc-

ddd

238 Getting lost

\bidirlo

\bidirlo

\bidirlo

\bidirlo

three

three

three

three

\blank
\hsize 3mm aaabbbcccddd-aaabbbcccddd aaabbbcccddd \blank
\hsize 3mm aaabbbcccddd(aaabbbcccddd)aaabbbcccddd \blank

\bidipop
\bidipop
\bidipop

\bidipop

aaa-
bbb-
ccc-
ddd
(-aaa-
bbb-
cce-
ddd-)
aaa-
bbb-
cce-

ddd

Gettinglost 239

240 Getting lost

XXIX Everything structure

At the time of this writing, ConTeXt MkIV spends some 50% of its time in Lua. There are
several reasons for this.

e AlliogoesvialLua, including messages and logging. This includes file searching which
happened to be done by the kpse library.

e Much font handling is done by Lua too, for instance OpenType features are com-
pletely handled by Lua.

e Because TgX is highy optimized, its influence on runtime is less prominent. Even if we
delegate some tasks to Lua, TgX still has work to do.

Among the reported statistics of a 242 page version of mk . pdf (not containing this chap-
ter) we find the following:

input load time - 0.094 seconds

startup time - 0.905 seconds (including runtime option file processing)
jobdata time - 0.140 seconds saving, 0.062 seconds loading
fonts load time - 5.413 seconds

xml load time - 0.000 seconds, lpath calls: 46, cached calls: 31
Ixml load time - 0.000 seconds preparation, backreferences: 0

mps conversion time - 0.000 seconds

node processing time - 1.747 seconds including kernel

kernel processing time - 0.343 seconds

attribute processing time - 2.075 seconds

language load time - 0.109 seconds, n=4

graphics processing time - 0.109 seconds including tex, n=7
metapost processing time - 0.484 seconds, loading: 0.016 seconds, execution: 0.203 seconds, n: 65

current memory usage - 332 MB

loaded patterns - gb:gb:pat:exc:3 nl:nl:pat:exc:4 us:us:pat:exc:2

control sequences - 34245 of 165536

callbacks - direct: 236579, indirect: 18665, total: 254244 (1050 per page)

runtime - 25.818 seconds, 242 processed pages, 242 shipped pages, 9.373 pages/second

The startup time includes initial font loading (we don't store fonts in the format). Jobdata
time involves loading and saving multipass data used for tables of contents, references,
positioning, etc. The time needed for loading fonts is over 5 seconds due to the fact
that we load a couple of real large and complex fonts. Node processing time mostly is
related to OpenType feature support. The kernel processing time refers to hyphenation
and line breaking, for which (of course) we use TgX. Direct callbacks are implicit calls to
Lua, using \directlua while the indirect calls concern overloaded TgX functions and
callbacks triggered by TeX itself.

Depending on the system load on my laptop, the throughput is around 10 pages per
second for this document, which is due to the fact that some font trickery takes place

Everything structure 241

using a few arabic fonts, some chinese, a bunch of metapost punk instances, Zapfino,
etc.

The times reported are accumulated times and contain quite some accumulated round-
ing errors so assuming that the operating system rounds up the times, the totals in practice
might be higher. So, looking at the numbers, you might wonder if the load on Lua will
become even larger. This is not necessary. Some tasks can be done better in Lua but not
always with less code, especially when we want to extend functionality and to provide
more robust solutions. Also, even if we win some processing time we might as well waste
itin interfacing between TgX and Lua. Forinstance, we can delegate pretty printingto Lua,
but most documents don't contain verbatim at all. We can handle section management
by Lua, but how many section headers does a document have?

When the future of TEX is discussed, among the ideas presented is to let TgX stick to type-
setting and implement it as a component (or library) on top of a (maybe dedicated) lan-
guage. This might sound like a nice idea, but eventually we will end up with some kind
of user interface and a substantial amount of code dedicated to dealing with fonts, struc-
ture, character management, math etc.

In the process of converting ConTgXt to MkIV we try to use each language (TgX, Lua, Meta-
Post) for what it is best suited for. Instead of starting from scratch, we start with existing
code and functionality, because we need a running system. Eventually we mightfind TgX's
role as language being reduced to (or maybe we can better talk of focused on’) mostly
aspects of typesetting, but ConTgXt as a whole will not be much different from the per-
spective of the user.

So, this is how the transition of ConTgXt takes place:

e Westarted with replacingisolated bits and pieces of code where Lua is a more natural
candidate, like file io, encoding issues.
We implement new functionality, for instance OpenType and Type1 support.
We reimplement mechanisms that are not efficient as we want them to be, like buffers
and verbatim.
We add new features, for instance tree based xml processing.
After evaluating we reimplement again when needed (or when LuaTgX evolves).

Yet another transition is the one we will discuss next:

e Wereplace complex mechanisms by new ones where we separate management and
typesetting.

This not so trivial effort because it affects many aspects of ConTgXt and as such we need
to adapt a lot of code at the same time: all things related to structure:

242 Everything structure

sectioning (chapters, sections, etc)

numbering (pages, itemize, enumeration, floats, etc)
marks (used for headers and footers)

lists (tables of contents, lists of floats, sorted lists)
registers (including collapsing of page ranges)

cross referencing (to text as well as pages)

notes (footnotes, endnotes, etc)

All these mechanisms are somehow related. A section head can occur in a list, can be
cross referenced, might be shows in a header and of course can have a number. Such
a number can have multiple components (1.A.3) where each component can have its
own conversion, rendering (fonts, colors) and selectively have less components. Intables
of contents either or not we want to see all components, separators etc. Such a table
can be generated at each level, which demands filtering mechanisms. The same is true
for registers. There we have page numbers too, and these may be prefixed by section
numbers, possibly rendered differently than the original section number.

Much if this is possible in ConTgXt MKklI, but the code that deals with this is not always
nice and clean and right from the start of the LuaTgX project it has been on the agenda to
clean itup. The code evolved over time and functionality was added when needed. But,
the projects that we deal with demand more (often local) control over the components
of a number.

What makes structure related data complexis that we need to keep track of each aspectin
order to be able to reproduce the rendering in for instance a table of contents, where we
also may want to change some of the aspects (for instance separators in a different color).
Another pendingissue is xml and although we could normally deal with this quite well, it
started making sense to make all multi-pass data (registers, tables of content, sorted lists,
references, etc.) more xml aware. This is a somewhat hairy task, if only because we need
to switch between TgX mode and xml mode when needed and at the same time keep an
eye on unwanted expansion: do we keep structure in the content or not?

Rewriting the code that deals with these aspects of typesetting is the first step in a sep-
aration of code in Mkll and MkIV. Until now we tried to share much code, but this no
longer makes sense. Also, atthe ConTgXt conference in Bohinj (2008) it was decided that
given the development of MkIV, it made sense to freeze Mkl (apart from bug fixes and
minor extensions). This decision opens the road to more drastic changes. We will roll
back some of the splits in code that made sharing code possible and just replace whole
components of ConTgXt as a whole. This also gives us the opportunity to review code
more drastically than until now in the perspective of e-TgX.

Because this stage in the rewrite of ConTgXt might bring some compatibility issues with it
(especially for users who use the more obscure tuning options), | will discuss some of the
changes here. A bit of understanding might make users more tolerant.

Everything structure 243

The core data structure that we need to deal with is a number, which can be constructed
in several ways.

sectioning 1L.A2.ll some title

pagenumber page 1.A —.

reference in chapter 2.1l

marking A': some title with preceding number

contents 2.1l some title with some page number 1.A —.
index some word ., A —.— B —i

itemize a firstitem a.1 subitem item

enumerate example 1A2.11 . a

floatcaption figure 1 -

footnotes note x

In this table we see how numbers are composed:

section number Ithasseveral components, separated by symbols and with an optional
final symbol

separator This can be different for each level and can have dedicated rendering
options

_ That can be preceded by a (partial) sectionnumber and separated
from the page number by another symbol

counter It can be preceded by a (partial) sectionnumber and can also have
subnumbers with its own separation properties
symbol Sometimes numbers get represented by symbols in which case we

use pagewise restarting symbol sets

Say that at some point we store a section number and/or page number. With the num-
ber we need to store information about the conversion (number, character, roman nu-
meral, etc) and the separators, including their rendering. However, when we reuse that
stored information we might want to discard some components and/or use a different
rendering. In traditional ConTgXt we have control over some aspects but due to the way
numbers are stored for later reuse this control is limited.

Say that we have cloned a subsection head as follows:
\definehead [MyHead] [section]

This is used as:

\MyHead [example] {Example}

In MkIl we save a list entry (which has the number, the title and a reference to the page)
and a reference to the the number, the title and the page (tagged example). Page num-
bers are stored in such a way that we can filter at specific section levels. This permits local
tables of contents.

244 Everything structure

The entry in the multi pass data file looks as follows (we collect all multi pass data in one
file):

\mainreference{}{example}{2--0-1-1-0-0-0-0--1}{1}{{I.I}{Example}}’
\listentry{MyHead}{2}{I.I}{Example}{2--0-1-1-0-0-0-0--1}{1}},

In MkIV we store more information and use tables for that. Currently the entry looks as
follows:

structure.lists.collected={

{

+,
{
metadata={
catcodes=4,
coding="tex",
internal=2,
kind="section",
name="MyHead",
reference="example",
},
pagenumber={
numbers={ 1, 1, 0 },
},
sectionnumber={
conversion="R",
conversionset="default",
numbers={ 0, 2 },
separatorset="default",
},
sectiontitle={
label="MyHead",
title="Example",
},

T,

{

T,
}

There can be much more information in each of the subtables. For instance, the pa-
genumber and sectionnumber subtables can have prefix, separatorset, conver-
sion, conversionset, stopper, segments and connector fields, and themetadata

Everything structure 245

table can contain information about the xml root document so that associated filtering
and handling can be reconstructed. With the section title we store information about the
preceding label text (seldom used, think of ‘Part B’).

This entry is used for lists as well as cross referencing. Actually, the stored information is
also used for markings (running heads). This means that these mechanisms must be able
to distinguish between where and how information is stored.

These tableslook rather verbose and indeed they are. We end up with much larger multi-
pass data files but fortunately loading them is quite efficient. Serializing on the other
hand might cost some time which is compensated by the fact that we no longer store
information in token lists associated with nodes in TgX's lists and in the future we might
even move more data handling to the Lua end. Also, in future versions we will share
similar data (like page number information) more efficiently.

Storing date atthe Lua end also has consequences for the typesetting. When specific data
is needed a call to Lua is necessary. In the future we might offer both push and pull meth-
ods (Lua pushing information to the typesetting code versus Lua triggering typesetting
code). For lists we pull, and for registers we currently push. Depending on our experi-
ences we might change these strategies.

Aside effect of the rewrite is that we force more consistency. Forinstance, you see a con-
versionfieldin the list. This is the old way of defining the way a number gets converted.
The modern approach is to use sets. Because we now have a more stringent inheritance
model at the user interface level, this might lead to incompatible conversions at lower
levels (when unset). Instead of cooking up some nasty compatibility hacks, we accept
some incompatibility, if only because users have to adapt their styles to new font tech-
nology anyway. And for older documents there is still MkII.

Instead of introducing many extra configuration variables (for each level of sectioning)
we introduce sets. These replace some of the existing parameters and are the follow up
on some (undocumented) precursor of sets. Examples of sets are:

\definestructureseparatorset [default][][.]
\definestructureconversionset [default] [] [numbers]
\definestructureresetset [default] [] [0]
\definestructureprefixset [default] [section-2,section-3] []
\definestructureseparatorset [appendix][][.]
\definestructureconversionset [appendix] [Romannumerals,Characters] []
\definestructureresetset [appendix] [] [0]

The third parameter is the default value. The sets that relate to typesetting can have a
rendering specification:

246 Everything structure

\definestructureseparatorset
[demosep]
[demo->!,demo->7,demo->%*,demo—>@]
[demo->/]

Here we apply demo to each of the separators as well as to the default. The renderer is
defined with:

\defineprocessor[demo] [style=\bfb,color=red]

You can imagine that, although this is quite possible in TgX, dealing with sets, splitting
them, handling the rendering, etc. is easier in Lua that in TgX. Of course the code still
looks somewhat messy, if only because the problem is messy. Part if this mess is related
to the fact that we might have to specify all components that make up a number.

section section number as part of head

list section number as part of list entry
section number as part of page number prefix
(optionally prefixed) page number

counter section number as part of counter prefix
(optionally prefixed) counter value(s)

pagenumber section number as part of page number
pagenumber components (realpage, page, subpage)

As a result we have upto 3 sets of parameters:

section sectionx*
list section* prefix* pagex*
counter section* numberx*

pagenumber prefix* pagex

When reimplementing the structure related commands, we also have to take mecha-
nisms into account that relate to them. For instance, index sorter code is also used for
sorted lists, so when we adapt one mechanism we also have to adapt the other. The same
is true for cross references, that are used all over the place. It helps that for the moment
we can omit the more obscure interaction related mechanism, if only because users will
seldom use them. Such mechanisms are also related to the backend and we're notyet in
the stage where we upgrade the backend code. In case you wonder why references can
be such a problematic areas think of the following:

\goto{here} [page(10),StartSound{ping},StartVideo{demo}]
\goto{there} [page(10) ,VideLayer{example}, JS(SomeScript{hi world})]
\goto{anywhere} [url (mypreviouslydefinedurl)]

Everything structure 247

The ConTgXt cross reference mechanism permits mixed usage of simple hyperlinks (jump
to some page) and more advanced viewer actions like showing widgets and runnign Java-
Script code. And even a simple reference like:

\at{here and there}[somefile::sometarget]

involves some code because we need to handle the three words as well as the outer
reference.> The reason why we need to reimplement referencing along with structure lays
in the fact that for some structure components (like section headers and float references)
we no longer store cross reference information separately butfilter it from the data stored
in the list (see example before).

The Lua code involved in dealing with the more complex references shown here is much
more flexible and robust than the original TEX code. This is a typical example of where the
accumulated time spent on the TgX based solution is large compared to the time spent
on the Lua variant. It's like driving 200 km by car through hilly terrain and wondering
how one did that in earlier times. Just like today scenery is not by definition better than
yestedays, MkIV code is not always better than Mkll code.

’ Currently ConTgXt does its own splitting of multiword references, and does so by reusing hyperlink re-
sources in the backend format. This might change in the future.

248 Everything structure

XXX Tracking

We entered 2009 with a partial reimplementation of the OpenType feature handler. One
of the reasons was an upgrade of the FontForge libraries that LuaTgX uses.

The specification of OpenType is kind of vague. Apart from a lack of a proper free specifi-
cations there's also the problem that Microsoft and Adobe may have their own interpre-
tation of how and in what order to apply features. In general the Microsoft website has
more detailed specifications and is a better reference. There is also some information in
the FontForge help files.

Because there is so much possible, fonts might contain bugs and/or be made to work
with certain renderers. These may evolve over time which may have the side effect that
suddenly fonts behave differently.

After a lot of experiments (mostly by Taco, me and Idris) we're now at yet another imple-
mentation. Of course all errors are mine and of course the code can be improved. There
are quite some optimization going on here and processing speed is currently acceptable.
Not all functions are implemented yet, often because I lack the fonts for testing. Many
scripts are not yet supported either, but | will look into them as soon as ConTgXt users ask
forit.

The data provided by the FontForge library has organized lookups (which relate to fea-
tures) in a certain way. A first implementation of this code was organized featurewise:
information related to features was collected and processing boiled down to a run over
the features. The current implementation honours the order in the main feature table.
Since we can reorder this table as we want, we can eventually support several models
of processing. We kept the static as well as dynamic feature processing, because it had
proved to be rather useful. The formerly three loop variants have been discarded but
might reappear at some time.

One reason for this change is that the interactive version of FontForge now provides a
more detailed overview of the way lookups are supposed to be handled. When you
consult the information of a font and in particular a glyph in a font, you now get quite
some information about what features can be applied and in what order this takes place.

In ConTgXt MkIV we deal with this as follows. Keep in mind that we start with charac-
ters but stepwise these can become more abstract representation, named glyphs. For
instance a letter a can be represented by a shape (glyph) that is similar to an uppercase A.

e We loop over all lookups. Normally there are only a few lookups but fonts that deal
with scripts that resemble handwriting, like arabic of Zapfino, might have hundreds

Tracking 249

of them. Each lookup has a detailed specification of what language and/or scripts it
applies to.

e For each lookup we do a run over the list of glyphs. So, if we have 50 lookups, and a
paragraph has 500 glyphs, we do some 25000 loops. Keep in mind that for arab we
start with a sequence of characters and vowels, and during a run, these might be re-
placed by for instance ligatures and combined vowels, so the 500 stepwise becomes
less.

e We only process the features that are enabled. Normally the lookups are organized
in such a way that features take place in a similar way: (de)composition, replacement
of initial, medial, final and isolated forms, specific replacements by one or more vari-
ant, composition of ligatures, mark positioning, cursive corrections and kerning. The
fontitself does not contain information about what features are to be enabled by de-
fault. Some applications have built in presets, others might extend their repertoire
over time.

e Alookup can be a contextual lookup, which means that treatment takes place on a
match of a sequence of characters (glyphs), either of not preceded or followed by
specific other characters (glyphs). We we loop over all contexts till we have a match.
Some fonts have lots of contextual lookups, which in turn might increase the num-
ber of loops over the list of characters (glyphs). If we have a match, we process the
associated list of sublookups. Technically it is possible to replace (say) five charac-
ters by first a ligature (that replaces the first two by one), then a multiple substitution
(resulting in an extra three glyphs replacing one) and then discarding the other rest
(being two characters). Because by that time characters (say, unicode points) might
have been replaced by glyphs (an index in the font) a contextual lookup can involve
quite some match points.

In ConTeXt we do this for each font that is used in a list, so in practice we have quite some
nested loops. Each font can have its own set of features enables of features might be
applied dynamically, independent of font related settings. So, around the mentioned
loops there is another one: a loop over the fonts used in a list (paragraph).

We process the whole listand then consultthe glyph nodes. An alternative approachisto
collect strings of characters using the same font including spaces (because some lookups
involve spaces). However, we then need to reconstruct the list which is no fun. Also, we
need to carry quite some information, like attributes, so eventually we don't gain much
(if we gain something at all).

Another consideration has been to operate on sublists of font usage (using a subhead
and subtail) but again this would complicate matters as we then neext to keep track of
a changing subhead and subtail. On the other hand, this might save some runtime. The

250 Tracking

number of changes in the code needed to do this is not that large but it only makes sense
when we have many fonts in a list and don't change fonts to frequently.

This whole treatment is rather extensively optimized and so the process is reasonable fast
(you really don't want to know how much time was spent on figuring out fast methods,
testing and reimplementing this). While | was implementing the Lua code, Taco made
sure that access to the information in nodes was as fast as possible and in our usual chat
sessions we compared the output with the one produced by the FontForge preview.

It was for this reason that more and more debugging code was added but even that made
tracking of what really happened cumbersome. Therefore a more visual method was
written, which will be shown laster on.

You can enable tracing using the designated commands:
\enabletracker [otf.ligatures,otf.singles]
and disable them for instance with:
\disabletracker[otf.*]

Oryou can pass directives to the command line:
context --track=otf.ligatures myfile.tex

With regards to OpenType handling we have the following tracker keys available:

otf.actions show all replacements and positioning
otf.alternatives show whatglyph isreplaced by what alternative
otf.analyzing color glyphs according to script specific analysis
otf.applied applied features per font instance

otf.bugs show diagnostic information

otf.contexts show what contextual lookups take place

otf.cursive show cursive anchoring when applied

otf.details show more details about lookup handling

otf.dynamics show dynamic feature definitions

otf.features show what features are a applied

otf.kerns show kerning between glyphs when applied
otf.ligatures show what glyphs are replaced by one other
otf.loading show more information when loading (caching) a font
otf.lookups keep track of what lookups are consulted

otf .marks show mark anchoring when applied

otf.multiples show what glyph is replaced by multiple others
otf.positions show what glyphs are positioned (combines other trackers)
otf.preparing show what information is collected for later usage in lookups

Tracking 251

otf.replacements show whatglyphs are replaced (combines other trackers)
otf.sequences
otf.singles show what glyph is replaced by one other

Some other trackers might also come in handy:

fonts.combining show what extra characters are added when forcing combined

shapes

fonts.defining show what fonts are defined

fonts.loading show more details when a font is loaded (and cached) for the first
time

We now show another way to track what happens with your text. Because this is rather
verbose, you should only apply it to words. The second argument can be -1 (right to left),
0 (default) or 1 (left to right). The third argument can be invisible in the code because the
fontused for verbatim might lack the shapes. Afont has a different orderingthan Unicode
because afterall one character can have multiple representations, one shape can be used
for multiple characters, or shapes might not have a Unicode pointatall. In MkIV we push
all shapes that have no direct relationship with Unicode to the private area so that TgX still
sees them (hence the large numbers in the following examples).

The next example uses Latin Modern. Here we apply the following features:

\definefontfeature
[latin-default]
[mode=node,language=dflt,script=latn,
liga=yes,calt=yes,clig=yes,
kern=yes]

\showotfcomposition
{name:1lmromani2regular*latin-default at 24pt}
{0}

{flinke fietser}

features: analyze=yes, calt=yes, clig=yes, kern=yes,
language=dflt, liga=yes, mode=node, script=latn

result:

1: v+e6:1 usec:l u+eo:l vrer:M u+en: K v+6s:E [glue] u+66: 1
U+69:1 [disc] U+65:€ U+74:1] U+73:8 U+65:1€ U+72:T

252 Tracking

Tinke fi

feature liga, lookup 1ls_1_8_s
replacing U+0066 (f) upto U+006C (1) by ligature U+FB02 (f_1)

2: U+FB02: U+69:m U+6E: 11 U+6B:ﬂ£ U+65:IC [glue] U+66:m U+69:m
[disc] U+65:0 U+74: L] U+73:S U+65:€ U+72:T

dinke fi

feature liga, lookup 1s_1_9_s
replacing U+0066 (f) upto U+0069 (i) by ligature U+FBO1 (f_i)

.
3: U+FBO2: U+69:m U+6E: I U+6B:[E U+65:IC [glue] U+FB01: [disc]
U+65:10 u+74:1 U+73:S U+65:€ U+72:T

feature kern, lookup pp_1l_1_s
inserting kern -42467.328 between U+006B (k) and U+0065 (e)

a: u+FB02: 1 v+69:1 vser:MT vren:K [kern] U+65:/C [glue] u+FBo1: M1
[disc] U+65:€ U+74: L U+73:1S U+65:€ U+72:1

flinke fietser

The next example uses Arabtype. Here we apply the following features:

\definefontfeature
[arabtype-default]
[mode=node,language=dflt,script=arab,
init=yes,medi=yes,fina=yes,isol=yes,
ccmp=yes,locl=yes,calt=yes,
liga=yes,clig=yes,dlig=yes,rlig=yes,
mark=yes ,mkmk=yes,kern=yes, curs=yes]

\showotfcomposition
{arabtype*arabtype-default at 48pt}
{-1}

{}

Tracking 253

features: analyze=yes, calt=yes, ccmp=yes, clig=yes, curs=yes,
dlig=yes, fina=yes, init=yes, isol=yes, kern=yes, language=dflt,
liga=yes, locl=yes, mark=yes, medi=yes, mkmk=yes, mode=node,
rlig=yes, script=arab

result:

1: [+TRT] U+627:W U+644: U+636:,Cjé U+651: U+64E:’/U+631:

U+651: U+64E:r[—TRT]

e

feature ccmp, lookup ls_arab_1_1_s
replacing U+0651 (uni0651) upto U+064E (uniO64E) by ligature
U+F0170 (uniO651064E)

feature ccmp, lookup ls_arab_1_1_s
replacing U+0651 (uni0651) upto U+064E (uniO64E) by ligature
U+F0170 (uni0651064E)

2: [+TRT] U+627:W U+644: U+636:cja U+F0170:FU+631: U+F0170:r‘
=4 |

[-TRT]

@
VN2 \

S\

feature fina, lookup as_arab_1_6_s
replacing U+0631 (uni0631) by alternative U+FEAE (uniFEAE)
(default, choice 1)

254 Tracking

3: [+TRT] U+627:W U+644: U+636:,cja U+F0170:FU+FEAE:

U+F0170:r[—TRT]

o

feature medi, lookup ss_arab_1_7_s
replacing U+0636 (uni0636) by single U+FECO (uniFECO)

4: [+TRT] U+627:W U+644: U+FECO : a2 U+F0170:rU+FEAE: U+F0170:T‘

[-TRT]

feature init, lookup ss_arab_1l_8_s
replacing U+0644 (uniO644) by single U+FEDF (uniFEDF)

L]

5: [+TRT] U+627:W U+FEDF:N U+FECO : &2 U+F0170:FU+FEAE: U+F0170:r
[-TRT] -

feature liga, lookup ls_arab_1_38_s
replacing U+FECO (uniFECO) upto U+FEAE (uniFEAE) by ligature
U+FD2C (uniFD2C)

6: [+TRT] U+627:W U+FEDF:W U+FD2C:;j542 U+F0170:rU+F0170:r[-TRT]

Tracking 255

feature mark, lookup ml_arab_1l_16_s, anchor Anchor-3, index 1, bound 1
anchoring mark U+F0170 (uniO0651064E) to baselig U+FD2C
(uniFD2C) at index 1 => (1489920,46080)

feature mark, lookup ml_arab_1l_16_s, anchor Anchor-3, index 2, bound 1
anchoring mark U+F0170 (uni0651064E) to baselig U+FD2C
(uniFD2C) at index 2 => (353280,-245760)

7: [+TRT] U+627:W U+FEDF:N U+FD2C:;j5£2 U+F0170:FU+F0170:r[—TRT]

feature mkmk, lookup mm_arab_1_21_s, anchor Anchor-7, bound 2
anchoring mark U+F0170 (uniO651064E) to basemark U+F0170
(uni0651064E) => (0,721920)

8: [+TRT] U+627:W U+FEDF:W U+FD2C:;j5£2 U+F0170:rU+F0170:r[—TRT]

\showotfcomposition
{arabtype*arabtype-default at 48pt}
{-1}

{}

features: analyze=yes, calt=yes, ccmp=yes, clig=yes, curs=yes,
dlig=yes, fina=yes, init=yes, isol=yes, kern=yes, language=dflt,
liga=yes, locl=yes, mark=yes, medi=yes, mkmk=yes, mode=node,
rlig=yes, script=arab

result:

P

256 Tracking

1: [+TRT] U+644:£j
[-TRT]

2]J

U+65O:LU+644: U+651: U+670:[U+647: U+650:L

feature ccmp, lookup ls_arab_1_1_s
replacing U+0651 (uni0651) upto U+0670 (uni0670) by ligature
U+F0173 (uni06510670)

2: [+TRT] U+644:Lj
[-TRT]

]

\
U+650 :I/U+644 ¢ Y U+F0173: rU+647 3N u+650 :L

feature fina, lookup as_arab_1_6_s
replacing U+0647 (uni0647) by alternative U+FEEA (uniFEEA)
(default, choice 1)

3: [+TRT] U+644:Lj

\
U+650 :I/U+644 Y u+Fo173: rU+FEEA A U+650:

L

[-TRT]

)

W
a)

o/
feature medi, lookup ss_arab_1_7_s

replacing U+0644 (uni0644) by single U+FEEO (uniFEEO)

P

4: [+TRT] U+644:£j U+650:LU+FEEO:K}U+F0173: U+FEEA:E¥ U+650:L

[-TRT]

Tracking 257

\

A,

feature init, lookup ss_arab_1l_8_s
replacing U+0644 (uniO644) by single U+FEDF (uniFEDF)

\
5: [+TRT] U+FEDF:N U+65O:LU+FEEOJE U+F0173:rU+FEEA:Bﬂ U+65O:L

[-TRT]

)

Al

feature calt, chain ks_arab_1_29_c_1, sub ss_1_68, lookup ss_1_68_s
replacing single U+FEDF (uniFEDF) by U+F0057 (uniFEDF.alt1)

\
6: [+TRT] U+F0057:N U+650:LU+FEEOJE U+F0173:rU+FEEA:Bﬁ U+650:L

[-TRT]

\

‘(KS

feature liga, lookup ls_arab_1_38_s
replacing U+F0057 (uniFEDF.altl) upto U+FEEA (uniFEEA) by
ligature U+FO3E5 (uni064406440647.isol)

\
7: [+TRT] U+F03E5: U+65O:LU+F0173:T“U+650:L[—TRT]

feature mark, lookup ml_arab_1l_16_s, anchor Anchor-4, index 1, bound 1
anchoring mark U+0650 (uniO650) to baselig U+FO3E5S
(uni064406440647 .is0l) at index 1 => (1536000,537600)

258 Tracking

feature mark, lookup ml_arab_1l_16_s, anchor Anchor-3, index 2, bound 1
anchoring mark U+F0173 (uni06510670) to baselig U+FO3E5
(uni064406440647 .is0l) at index 2 => (875520,-61440)

feature mark, lookup ml_arab_1l_16_s, anchor Anchor-4, index 3, bound 1
anchoring mark U+0650 (uni0650) to baselig U+FO3E5
(uni064406440647.is0l) at index 3 => (261120,522240)

\
8: [+TRT] U+F03E5: U+65O:LU+F0173:T&U+650: [-TRT]

L

P

Another arabic example (after all, fonts that support arabic have lots of nice features) is
the following. First we define a bunch of feature collections

\definefontfeature

[salt-n]

[analyze=yes,mode=node,
language=dflt,script=arab,
init=yes,medi=yes,fina=yes,isol=yes,
liga=yes,calt=yes,ccmp=yes,
kern=yes, curs=yes ,mark=yes,mkmk=yes]

\definefontfeature[salt-y] [salt-n] [salt=yes]
\definefontfeature[salt-1] [salt-n] [salt=1]
\definefontfeature[salt-2] [salt-n] [salt=2]
\definefontfeature[salt-3] [salt-n] [salt=3]
\definefontfeature[salt-r] [salt-n] [salt=random]

Next we show a few traced examples. Watch the reported alternatives.

\showotfcomposition{scheherazaderegot*salt-n at 36pt}{-1}{\char"6DD}
\showotfcomposition{scheherazaderegot*salt-y at 36pt}{-1}{\char"6DD}
\showotfcomposition{scheherazaderegot*salt-1 at 36pt}{-1}{\char"6DD}
\showotfcomposition{scheherazaderegot*salt-2 at 36pt}{-1}{\char"6DD}
\showotfcomposition{scheherazaderegot*salt-3 at 36pt}{-1}{\char"6DD}
\showotfcomposition{scheherazaderegot*salt-r at 36pt}{-1}{\char"6DD}
\showotfcomposition{scheherazaderegot*salt-r at 36pt}{-1}{\char"6DD}
\showotfcomposition{scheherazaderegot*salt-r at 36pt}{-1}{\char"6DD}

Tracking 259

features:
init=yes,
medi=yes,

result:

1: [+TRT] U+6DD:§¢3

features:
init=yes,
medi=yes,

result:

[+TRT] U+6DD:§jj

analyze=yes, calt=yes, ccmp=yes, curs=yes, fina=yes,
isol=yes, kern=yes, language=dflt, liga=yes, mark=yes,
mkmk=yes, mode=node, script=arab

[-TRT]

analyze=yes, calt=yes, ccmp=yes, curs=yes, fina=yes,
isol=yes, kern=yes, language=dflt, liga=yes, mark=yes,
mkmk=yes, mode=node, salt=yes, script=arab

[-TRT]

feature salt, lookup as_arab_1_14_s
replacing U+06DD (uniO6DD) by alternative U+FO01DC (uniO6DD.alt)
(default, choice 1)

2:

[+TRT] U+FO1DC:

[-TRT]

features: analyze=yes, calt=yes, ccmp=yes, curs=yes, fina=yes,
init=yes, isol=yes, kern=yes, language=dflt, liga=yes, mark=yes,
medi=yes, mkmk=yes, mode=node, salt=1, script=arab

result:

260

Tracking

1: [+TRT] U+6DD: [-TRT]

feature salt, lookup as_arab_1_14_s
replacing U+06DD (uniO6DD) by alternative U+FO01DC (uniO6DD.alt)
(choice 1)

2: [+TRT] U+F01DC:D [-TRT]

features: analyze=yes, calt=yes, ccmp=yes, curs=yes, fina=yes,
init=yes, isol=yes, kern=yes, language=dflt, liga=yes, mark=yes,
medi=yes, mkmk=yes, mode=node, salt=2, script=arab

result:

1: [+TRT] U+6DD:§jj [-TRT]

feature salt, lookup as_arab_1l_14_s
replacing U+06DD (uniO6DD) by alternative U+FO1DD
(uniO6DD.altB) (choice 2)

2: [+TRT] U+F01DD:[,,,,,,,] [-TRT]

features: analyze=yes, calt=yes, ccmp=yes, curs=yes, fina=yes,
init=yes, isol=yes, kern=yes, language=dflt, liga=yes, mark=yes,
medi=yes, mkmk=yes, mode=node, salt=3, script=arab

Tracking 261

result:

1: [+TRT] U+6DD:§jj [-TRT]

feature salt, lookup as_arab_1l_14_s
replacing U+06DD (uniO6DD) by alternative U+FO01DD
(uni06DD.altB) (no 3 variants, taking 2)

2: [+TRT] U+F01DD:[,,,,,,,] [-TRT]

features: analyze=yes, calt=yes, ccmp=yes, curs=yes, fina=yes,
init=yes, isol=yes, kern=yes, language=dflt, liga=yes, mark=yes,
medi=yes, mkmk=yes, mode=node, salt=random, script=arab

result:

1: [+TRT] U+6DD:§jj [-TRT]

feature salt, lookup as_arab_1_14_s
replacing U+06DD (uniO6DD) by alternative U+FO01DD
(uniO6DD.altB) (random, choice 2)

2: [+TRT] U+F01DD:[,,,,,,,] [-TRT]

262 Tracking

features: analyze=yes, calt=yes, ccmp=yes, curs=yes, fina=yes,
init=yes, isol=yes, kern=yes, language=dflt, liga=yes, mark=yes,
medi=yes, mkmk=yes, mode=node, salt=random, script=arab

result:

1: [+TRT] U+6DD:§j§ [-TRT]

feature salt, lookup as_arab_1l_14_s
replacing U+06DD (uniO6DD) by alternative U+FO1DC (uniO6DD.alt)
(random, choice 1)

2: [+TRT] U+F01DC:(i> [-TRT]

features: analyze=yes, calt=yes, ccmp=yes, curs=yes, fina=yes,
init=yes, isol=yes, kern=yes, language=dflt, liga=yes, mark=yes,
medi=yes, mkmk=yes, mode=node, salt=random, script=arab

result:

1: [+TRT] U+6DD:© [-TRT]

feature salt, lookup as_arab_1_14_s
replacing U+06DD (uniO6DD) by alternative U+FO01DD
(uniO6DD.altB) (random, choice 2)

Tracking 263

2: [+TRT] U+F01DD:[,,,,,,,] [-TRT]

The font that we use here can be downloaded from the website of Sil International.
For a Zapfino example we use the following feature set:

\definefontfeature
[zapfino-default]
[mode=node,language=dflt,script=latn,
calt=yes,clig=yes,rlig=yes,tlig=yes,
kern=yes, curs=yes]

\showotfcomposition
{zapfinoextraltpro*zapfino-default at 48pt}
{0}

{Prof. Dr. Donald E. Knuth}

features: analyze=yes, calt=yes, clig=yes, curs=yes, kern=yes,
language=dflt, mode=node, rlig=yes, script=latn, tlig=yes

result:

1: U+50:.L 7T U+72: [/ U+6F : |} U+66:/ U+2F: s [gluel U+44: /) U+72: /1

.
U+2E: [glue] U+44:] D, U+6F :[(MU+6E: /] [disc] U+61:@/U+6C:W

L~
U+64:%1ue] U+45: U+2E:= [glue] U+4B:K \Uj6E:@/U+75:@/

U+74:1¥U+68:Lék/~

264 Tracking

P/j/ Dr. Donald E. Kt

feature clig, lookup 1ls_latn_1_22_s
replacing U+0044 (D) upto U+002E (period) by ligature U+E366

(D_r_period)

4
2: U+50:.4] U+72:[/T U+6F :\((}U+66:/ U+2E:-s [glue] U+E366:

<
[glue] U+44: /)’ U+6F : [U+6E: 1/ [disc] U+61:@/U+6C:%+64:Q//‘
L~

[glue] U+45: U+2E: [glue] U+4B:K \U/+6E:@/U+75:@U+74:@C

U+68:Lék/‘N
Pfj/ D Donald E. Kt

A~

feature calt, chain ks_latn_1_32_c_4, sub ss_1_89, lookup ss_1_89_s
replacing single U+0066 (f) by U+E1AC (f.3)

feature calt, chain ks_latn_1_32_c_4, sub ss_1_89, lookup ss_1_89_s
replacing single U+0061 (a) by U+E190 (a.3)

3: U+50:.L 1 U+72:[/T U+6F [} U+E1AC: U+2E: [gluel U+E366:(:;Zj;r

.
[glue] U+44:] D, U+6F :[(MU+6E: /] [disc] U+E190:@/U+GC:M+64:Q//-
L~

[glue] U+45: U+2E:~ [glue] U+4B:K $6E:@/U+75:@/U+74:@C

U+68:L%f/ﬂ

Tracking 265

[E. Kuth

feature calt, chain ks_latn_1_34_c_0, sub ss_1_83, lookup ss_1_83_s
replacing single U+006E (n) by U+E1C8 (n.2)

4: U+50:LL 7 U+72:[/T U+6F : M U+ELAC: |/ U+2E: s [glue] U+E366:ﬁ

[glue] U+44:B U+6F [U+E1C8: [/ [disc] U+E190:@U+6C:%+64:Q//

L~
[glue] U+45: U+2E:= [glue] U+4B:K \U/+6E:@/U+75:@/U+74:@C

U+68:£ék/ﬂ

. Kuth

feature calt, chain ks_latn_1_36_c_4, sub ss_1_91, lookup ss_1_91_s
replacing single U+0072 (r) by U+E1D8 (r.2)

5: U+50:.4] U+E1D8: /T U+6F :[(}U+E1AC: /| U+2E: s [gluel]

U+E366:@f [glue] U+44: /) U+6F :[(MU+E1C8: /]l [disc] U+E190:d

_
U+6C:%+64:%1ue] U+45: U+2E:= [glue] U+4B:K \qusE:@/
U+75:{{ U+74 :BC U+68: Q/‘

Dafe D Dol E. Kutt

feature calt, chain ks_latn_1_61_c_4, sub ss_1_89, lookup ss_1_89_s
replacing single U+0050 (P) by U+E03D (P.3)

266 Tracking

feature calt, chain ks_latn_1_61_c_2, sub ss_1_89, lookup ss_1_89_s
replacing single U+0044 (D) by U+E019 (D.3)

feature calt, chain ks_latn_1_61_c_1, sub ss_1_88, lookup ss_1_88_s
replacing single U+004B (K) by U+E02D (K.2)

6: U+E03D:é U+E1D8:[/[U+6F : (M U+E1AC:|/ U+2E:o [gluel

‘]
U+E366:@f [glue] U+E019: @ U+6F : It u+E1C8: /] [disc]
U+E190:@U+6C:%+64:%1ue] U+45: U+2E: [glue]
U+E02D: K _U+6E: [/ U+75:[{{ U+74: L uves: %

When dealing with features, we may run into problems due to characters that are in the
input stream but have no associated glyph in the font. Although we test for this a user
might want to intercept side effect.

\checkcharactersinfont
\removemissingcharacters

The first command only checks and reports missing characters, while the second one also
removes them.

Tracking 267

268 Tracking

XXXI The order of things

Normally the text that makes up a paragraph comes directly from the input stream or
macro expansions (think of labels). When TgX has collected enough content to make a
paragraph, for instance because a \par token signals it TEX will try to create one. The
raw material available for making such a paragraph is linked in a list nodes: references to
glyphs in a font, kerns (fixed spacing), glue (flexible spacing), penalties (consider them to
be directives), whatsits (can be anything, e.g. pdfliterals or hyperlinks). The resultis a list
of horizontal boxes (wrappers with lists that represent ‘lines’) and this is either wrapped
in vertical box of added to the main vertical list that keeps the page stream.

The treatment consists of four activities:

construction of ligatures (an f plus an i can become fi)
hyphenation of words that cross a line boundary
kerning of characters based on information in the font
breaking the list in lines in the most optimal way

The process of breaking into lines is also influenced by protrusion (like hanging punc-
tuation) and expansion (hz-optimization) but here we will not take these processes into
account. There are numerous variables that control the process and the quality.

These activities are rather interwoven and optimized. For instance, in order to hyphen-
ate, ligatures are to be decomposed and/or constructed. Hyphenation happens when
needed. Decisions about optimal breakpoints in lines can be influenced by penalties
(like: not to many hyphenated words in a row) and permitting extra stretch between
words. Because a paragraph can be boxed and unboxed, decomposed and fed into the
machinery again, information is kept around. Just imagine the following: you want to
measure the width of a word and therefore you box it. In order to get the right dimen-
sions, TEX has to construct the ligatures and add kerns. However, when we unbox that
word and feed it into the paragraph builder, potential hyphenation points have to be
consulted and at such a point might lay between the characters that resulted in the liga-
ture. You can imagine that adding (and removing) inter-character kerns complicates the
process even more.

At the cost of some extra runtime and memory usage, in LuaTgX these steps are more
isolated. There is a function that builts ligatures, one that kerns characters, and another
one that hyphenates all words in a list, not just the ones that are candidate for break-
ing. The potential breakpoints (called discretionaries) can contain ligature information
as well. The linebreak process is also a separate function.

The order of things 269

The order in which this happens now is:

hyphenation of words

building of ligatures from sequences of glyphs
kerning of glyphs

breaking all this into lines

One can discuss endless about the terminology here: are we dealing with characters or
with glyphs. When a glyph node is made, it contains a reference to a slot in a font. Be-
cause in traditional TEX the number of slots is limited to 256 the relationship between
characters in the input and the shape in the font, called glyph, is kind of indirect (the in-
putencodingversus fontencodingissue) while in LuaTgX we can keep the fontin Unicode
encoding if we want. In traditional TgX, hyphenation is based on the font encoding and
therefore glyphs, and although in LuaTgX this is still the case, there we can more safely
talk of characters till we start mapping then to shapes that have no Unicode point. This
is of course macro package dependent but in ConTgXt MkIV we normalize all input to
Unicode exclusively.

The laststep is now really isolated and for that reason we can besttalk in terms of prepara-
tion of the to-be paragraph when we referto the first three activities. In LuaTgX these three
are available as functions that operate on a node list. They each have their own callback
so we can disable them by replacing the default functions by dummies. Then we can
hook in a new function in the two places that matter: hpack_filter and pre_line-
break_filter and move the preparation to there.

A simple overload is shown below. Because the first node is always a whatsit that holds
directional information (and at some point in the future maybe even more paragraph re-
lated state info), we can safely assume thathead does not change. Of course this situation
might change when you start adding your own functionality.

local function my_preparation(head)
local tail = node.slide(head) -- also add prev pointers
tail = lang.hyphenate(head,tail)
tail = node.ligaturing(head,tail)
tail = node.kerning(head,tail)
return head
end

callback.register("pre_linebreak_filter", my_preparation)
callback.register("hpack_filter", my_preparation)

local dummy = function(head,tail) return tail end

callback.register ("hyphenate", dummy)

270 The order of things

callback.register("ligaturing", dummy)
callback.register("kerning", dummy)

It might be clear that the order of actions matter. It might also be clear that you are re-
sponsible for that order yourself. There is no pre-cooked mechanism for guarding your
actions and there are several reasons for this:

e Each macro package does things its own way so any hard-coded mechanism would
be replaced and overloaded anyway. Compare this to the usage of catcodes, font
systems, auxiliary files, user interfaces, handling of inserts etc. The combination of
callbacks, the three mentioned functions and the availability of Lua makes it possible
to implement any system you like.

e Macro packages might want to provide hooks for specialized node list processing,
and since there are many places where code can be hooked in, some kind of oversight
is needed (real people who keep track of interference of user supplied features, no
program can do that).

e User functions can mess up the node list and successive actions then might make
the wrong assumptions. In order to guard this, macro packages might add tracing
options and again there are too many ways to communicate with users. Debugging
and tracing has to be embedded in the bigger system in a natural way.

In ConTpXt MKIV there are already a few places where users can hook code into the task
list, but so far we haven't really encouraged that. The interfaces are simply not stable
enough yet. On the other hand, there are already quite some node list manipulators at
work. The most prominent one is the OpenType feature handler. That one replaces the
ligature and kerning functions (at least for some fonts). It also means that we need to
keep an eye on possible interferences between ConTgXt MkIV mechanisms and those
provided by LuaTgX.

For fonts, that is actually quite simple: the LuaTgX functions use ligature and kerning in-
formation stored in the tfm table, and for OpenType fonts we simply don't provide that
information when we define afont, so in that case LuaTgX will not ligature and kern. Users
can influence this process to some extend by setting the mode for a specific instance of
a font to base ornode. Because Type1 fonts have no features like OpenType such fonts
are (at least currently) always are processed in base mode.

Deep down in ConTgXt we call a sequence of actions a ‘task’. One such task is ‘proces-
sors’ and the actions discussed so far are in this category. Within this category we have
subcategories:

subcategory intended usage

before experimental (or module) plugins

The order of things 271

normalizers cleanup and preparation handlers

characters operations on individual characters
words operations on words

fonts font related manipulations

lists manipulations on the list as a whole
after experimental (or module) plugins

Here ‘plugins’ are experimental handlers or specialized ones provided in modules that
are not part of the kernel. The categories are not that distinctive and only provide a con-
venient way to group actions.

Examples of normalizers are: checking for missing characters and replacing character ref-
erences by fallbacks. Character processors are for instance directional analysers (for right
to left typesetting), case swapping, and specialized character triggered hyphenation (like
compound words). Word processors deal with hyphenation (here we use the default
function provided by LuaTgX) and spell checking. The font processors deal with Open-
Type as well as the ligature building and kerning of otherfont types. Finally, the list proces-
sors are responsible for tasks like special spacing (french punctuation) and kerning (addi-
tional inter—character kerning). Of course, this all is rather ConTgXt specificand we expect
to add quite some more less trivial handlers the upcoming years.

Many of these handlers are triggered by attributes. Nodes can have many attributes and
each can have many values. Traditionally TeX had only a few attributes: language and
font, where the first is not even a real attribute and the second is only bound to glyph
nodes. In LuaTgX language is also a glyph property. The nice thing about attributes is that
they can be set at the TEX end and obey grouping. This makes them for instance perfect
for implementing color mechanims. Because attributes are part of the nodes, and not
nodes themselves, they don'tinfluence or interfere processing unless one explicitly tests
for them and acts accordingly.

In addition to the mentioned task ‘processors’ we also have a task ‘shipouts” and there
will be more tasks in future versions of ConTgXt. Again we have subcategories, currently:

subcategory intended usage

before experimental (or module) plugins
normalizers cleanup and preparation handlers
finishers manipulations on the list as a whole
after experimental (or module) plugins

An example of a normalizer is cleanup of the ‘to be shipped out’ list. Finishers deal with
color, transparency, overprint, negated content (sometimes used in page imposition),
special effects effect (like outline fonts) and viewer layers (something pdf). Quite pos-
sible hyperlink support will also be handled there but not before the backend code is
rewritten.

272 The order of things

The previous description is far from complete. Forinstance, notall handlers use the same
interface: some work head onwards, some need a tail pointer too. Some report back
success or failure. So the task handler needs to normalize their usage. Also, some effort
goes into optimizing the task in such a way that processing the document is still reason-
able fast. Keep in mind that each construction of a box invokes a callback, and there
are many boxes used for constructing a page. Even a nilled callback is one, so for a sim-
ple one word paragraph four callbacks are triggered: the (nilled) hyphenate, ligature and
kern callbacks as well as the one called pre_linebreak_filter. The task handlerthat
we plug in the filter callbacks calls many functions and each of them does one of more
passes over the node list, and in turn might do many call to functions. You can imagine
that we're quite happy that TEX as well as Lua is so efficient.

As | already mentioned, implementing a task handler as well as deciding what actions
within tasks to perform in what order is specific for the way a macro package is set up.
The following code can serve as a starting point

filters = { } -- global namespace
local 1list = { }

function filters.add(fnc,n)
if not n or n > #list + 1 then
table.insert(list,#list+1)
elseif n < 0 then
table.insert(list, 1)
else
table.insert(list,n)
end
end

function filters.remove(fnc,n)
if n and n > 0 and n <= #list then
table.remove(list,n)
end
end

local function run_filters(head,...)
local tail = node.slide(head)
for _, fnc in ipairs(list) do
head, tail = fnc(head,tail,...)
end
return head
end

The order of things 273

local function hyphenation(head,tail)

return head, tail, lang.hyphenate(head,tail) -- returns done
end
local function ligaturing(head,tail)

return node.ligaturing(head,tail) -- returns head,tail,done
end
local function kerning(head,tail)

return node.kerning(head,tail) -- returns head,tail,done
end

filters.add(hyphenation)
filters.add(ligaturing)
filters.add(kerning)

callback.register("pre_linebreak_filter", run_filters)
callback.register("hpack_filter", run_filters)

Although one can inject extra filters by using the add function it may be clear that this
can be dangerous due to interference. Therefore a slightly more secure variant is the
following, where main is reserved for macro package actions and the others can be used

by add-ons.

filters = { } -- global namespace

local list = {
pre = { }, main = { }, post = { },

local order = {
"prell s llmainll s llpostll

}

local function somewhere(where)
if not where then
texio.write_nl("error: invalid filter category")
elseif not list[where] then
texio.write_nl(string.format("error: invalid filter category
"%s'" ,where))
else
return list[where]
end
return false

274 The order of things

end

function filters.add(where,fnc,n)
local list = somewhere(where)
if not list then
-- error
elseif not n or n > #list + 1 then
table.insert(list,#list+1)
elseif n < 0 then
table.insert(list,1)
else
table.insert(list,n)
end
end

function filters.remove(where,fnc,n)
local list = somewhere(where)
if list and n and n > 0 and n <= #list then
table.remove(list,n)

end
end
local function run_filters(head,...)
local tail = node.slide(head)
for _, 1lst in pairs(order) do
for _, fnc in ipairs(list[lst]) do
head, tail = fnc(head,tail,...)
end
end
return head
end

filters.add("main" ,hyphenation)
filters.add("main",ligaturing)
filters.add("main",kerning)

callback.register("pre_linebreak_filter", run_filters)
callback.register("hpack_filter", run_filters)

Of course, ConTgXt users who try to use this code will be punished by loosing much of
the functionality already present, simply because we use yet another variant of the above
code.

The order of things 275

276 The order of things

XXXIl Unicode math

I assume that the reader is somewhat familiar with math in TgX. Although in ConTgXt we try to
support the concepts and symbols used in the TEX community we have our own way of imple-
menting math. The fact that ConTgXt is not used extensively for conventional math journals
permits us to rigourously re-implement mechanisms. Of course the user interfaces mostly re-
main the same.

introduction

The LuaTgX project entered a new stage when end of 2008 and beginning of 2009 math
got opened up. Although TgX can handle math pretty good we had a few wishes that we
hoped to fulfill in the process. That TEX's math machinery is a rather independent subsys-
tem is reflected in the fact that after parsing there is an intermediate list of so called noads
(math elements), which then gets converted into a node list (glyphs, kerns, penalties, glue
and more). This conversion can be intercepted by a callback and a macro package can
do whatever it likes with the list of noads as long as it returns a proper list.

Of course ConTgXt does support math and that is visible in its code base:

e Due to the fact that we need to be able to switch to alternative styles the font system
is quite complex and in ConTgXt Mkll math font definitions (and changes) are good
for 50% of the time involved. In MkIV we can use a more efficient model.

e Because some usage of ConTgXt demands the mix of several completely different en-
coded math fonts there is a dedicated math encoding subsystem in MkIl. In MkIV we
will use Unicode exclusively.

e Some constructs (and symbols) are implemented in a way that we find suboptimal.
In the perspective of Unicode in MkIV we aim at all symbols being real characters.
This is possible because all important constructs (like roots, accents and delimiters)
are supported by the engine.

e Inorderto fit vertical spacing around math (think for instance of typesetting on a grid)
in Mkl we have ended up with rather messy and suboptimal code.® The expectation
is that we can improve that.

In the following sections | will discuss a few of the implementation details of the font re-
lated issues in MkIV. Of course a few years from now the actual solutions we implemented
might look different but the principles remain the same. Also, as with other components

This is because spacing before and after formulas has to cooperate with spacing of structural components
that surround it.

Unicode math 277

of LuaTgX Taco and | worked in parallel on the code and its usage, which made both our
tasks easier.

transition

In TgX, math typesetting uses a special concept called families. Each math component
(number, letter, symbol, etc) is member of a family. Because we have three sizes (text,
script and scriptscript) this results in a family-size matrix of defined fonts. Because the
number of glyphs in a font was limited to 256, in practice it meant that we had quite
some font definitions. The minimum number of families was 4 (roman, italic, symbol,
and extension) but in practice several more could be active (sans, bold, mono-spaced,
more symbols, etc.) for specific alphabets or extra symbols (for instance ams set A and
B). The total number of families in traditional TEX is limited to 16, and one easily hits this
maximum. In that case, some 16 times 3 fonts are defined for one size of which in practice
only a few are really used in the typesetting.

A potential source of confusion is bold math. Bold in math can either mean having some
bold letters, or having the whole formula in bold. In practice this means that for a com-
plete bold formula one has to define the whole lot using bold fonts. A complication is
that the math symbols (etc) are kind of bound to families and so we end up with either
redefining symbols, or reusing the families (which is easier and faster). In any case there
is a performance issue involved due to the rather massive switch from normal to bold.

In Unicode all alphabets that make sense as well as all math symbols are part of the defi-
nition although unfortunately some alphabets have their letters spread over the Unicode
vector and not in a range (like blackboard). This forces all applications that want to sup-
port math to implement similar hacks to deal with it.

In MkIV we will assume that we have Unicode aware math fonts, like OpenType. The font
that sets the standard is Microsoft Cambria. The upcoming (I'm writing this in January
2009) TgXGyre fonts will be compliant to this standard but they're not yet there and so
we have a problem. The way out is to define virtual fonts and now that LuaTgX math is
extended to cover all of Unicode as well as provides access to the (intermediate) math
lists this has become feasible. This also permits us to test LuaTgX with both Cambria and
Latin Modern Virtual Math.

The advantage is that we can stick to just one family for all shapes which simplifies the
underlying TeX code enormously. First of all we need to define way less fonts (which is
partially compensated by loading them as part of the virtual font) and all math aspects
can now be dealt with using the character data tables.

One tricky aspect of the new approach is that the Latin Modern fonts have design sizes,
so we have to define several virtual fonts. On the other hand, fonts like Cambria have
alternative script and scriptscript shapes which is controlled by the ssty feature, a gsub

278 Unicode math

alternate that provides some alternative sizes fora couple of hundred characters that mat-
ter.

text Immil2 at 12pt cambria at 12pt with ssty=no
script Immi8 at 8pt cambria at 8pt with ssty=1
scriptscript 1mmi6 at 6pt cambria at 6pt with ssty=2

So Cambria notso much has design sizes but shapes optimized relative to the text variant:
in the following example we see text in red, script in green and scriptscript in blue.

\definefontfeature[math] [analyze=false,script=math,language=dflt]

\definefontfeature[text] [math] [ssty=no]
\definefontfeature[script] [math] [ssty=1]
\definefontfeature[scriptscript] [math] [ssty=2]

Let us first look at Cambria:

\startoverlay
{\definedfont [name:cambriamath*scriptscript at 150pt]\mkblue X}
{\definedfont [name: cambriamath*script at 150pt]\mkgreen X}
{\definedfont [name:cambriamath*text at 150pt]\mkred X}
\stopoverlay

When we compare them scaled down as happens in real script and scriptscript we get:

\startoverlay
{\definedfont [name:cambriamath*scriptscript at 120pt]\mkblue X}
{\definedfont [name: cambriamath*script at 80pt]\mkgreen X}
{\definedfont [name:cambriamath*text at 60pt]\mkred X}
\stopoverlay

Unicode math 279

Next we see (scaled) Latin Modern:

\startoverlay
{\definedfont [LMRoman8-Regular at 150pt]\mkblue X}
{\definedfont [LMRoman10-Regular at 150pt]\mkgreen X}
{\definedfont [LMRoman12-Regular at 150pt]\mkred X}
\stopoverlay

In practice we will see:

\startoverlay
{\definedfont [LMRoman8-Regular at 120pt]\mkblue X}
{\definedfont [LMRoman10-Regular at 80pt]\mkgreen X}
{\definedfont [LMRomanl12-Regular at 60pt]\mkred X}
\stopoverlay

Both methods probably work out well although you need to keep in mind that the Open-
Type ssty feature is not so much a design size related feature.

An OpenType font can have a specification for the script and scriptscript size. By default
we listen to this specification instead of the one imposed by the bodyfont environment.
When you turn on tracing

\enabletrackers[otf.math]
you will get messages like:

asked scriptscript size: 458752, used: 471859.2 (102.86 %)
asked script size: 589824, used: 574095.36 (97.33 %)

The differences between the defaults and the font recommendations are not that large
so by default we listen to the font specification.

280 Unicode math

qk T 11
= =

In this overlay the white text is scaled according to the specification in the font, while the
red text is scaled according to the bodyfont environment (12/7/5 points).

COS:— gl

going virtual

The number of math fonts (used) in the TEX community is relatively small and of those
only Latin Modern (which builds upon Computer Modern) has design sizes. This means
that the amount of Unicode compliant virtual math fonts that we have to make is not
that large. We could have used an already present virtual composition mechanism but
instead we made a handy helper function that does a more efficient job. This means that
a definition looks (a bit simplified) as follows:

mathematics.make font ("lmromanlO-math", {
{ name="lmromanl0O-regular", features="virtualmath", main=true 1},

{ name="1mmil0", vector="tex-mi", skewchar=0x7F },

{ name="1lmsy10", vector="tex-sy", skewchar=0x30, parameters=true
o,

{ name="1mex10", vector="tex-ex", extension=true } ,

{ name="msam10", vector="tex-ma" },

{ name="msbm10", vector="tex-mb" },

{ name="lmroman10-bold", "tex-bf" } ,

{ name="1mmib10", vector="tex-bi", skewchar=0x7F } ,

{ name="lmsans10-regular", vector="tex-ss", optional=true },

{ name="lmmonolO-regular", vector="tex-tt", optional=true },
)

For the TEXGyre Pagella it looks this way:

mathematics.make_font ("px-math", {

{ name="texgyrepagella-regular", features="virtualmath", main=true
+s

{ name="pxr", vector="tex-mr" } ,

{ name="pxmi", vector="tex-mi", skewchar=0x7F 1},

{ name="pxsy", vector="tex-sy", skewchar=0x30, parameters=true }
b

{ name="pxex", vector="tex-ex", extension=true } ,

{ name="pxsya", vector="tex-ma" },

{ name="pxsyb", vector="tex-mb" },
)

Unicode math 281

As you can see, it is possible to add alphabets, given that there is a suitable vector that
maps glyph indices onto Unicodes. It is good to know that this function only defines the
way such a font is constructed. The actual construction is delayed till the font is needed.

Such a virtual font is used in typescripts (the building blocks of typeface definitions in
ConTgXt) as follows:

\starttypescript [math] [palatino] [name]
\definefontsynonym [MathRoman] [pxmath@px-math]
\loadmapfile[original-youngryu-px.map]

\stoptypescript

If you're familiar with the way fonts are defined in ConTgXt, you will notice that we no
longer need to define Mathltalic, MathSymbol and additional symbol fonts. Of course
users don't have to deal with these issues themselves. The @ triggers the virtual font

builder.

You can imagine that in Mkll switching to another font style or size involves initializing
(or at least checking) involves some 30 to 40 font definitions when it comes to math (the
number of used families times 3, the number o fmath sizes.). And even if we take into
account that fonts are loaded only once, this checking and enabling takes time. Keep in
mind that in ConTgXt we can have several math font sets active in one document which
comes at a price.

In MKIV we use one family (at three sizes). Of course we need to load the font (and more
than one in the case of virtual variants) but when switching bodyfont sizes we only need
to enable one (already defined) math font. And that really saves time. This is one of the
areas where we gain back time that we loose elsewhere by extending core functionality
using Lua (like OpenType support).

dimensions

By setting font related dimensions you can control the way TgX positions math elements
relative to each other. Math fonts have afew more dimensions than regular text fonts. But
OpenType math fonts like Cambria have quite some more. There is a nice booklet pub-
lished by Microsoft, ‘Mathematical Typesetting’, where dealing with math is discussed
in the perspective of their word processor and TgX. In the booklet some of the parame-
ters are discussed and since many of them are rather special it makes no sense (yet) to
elaborate on them here.” Figuring out their meaning was quite a challenge.

| am the first to admit that the current code in MkIV that deals with math parameters is
somewhat messy. There are several reasons for this:

Googling on ‘Ulrich Vieth’, “TeX” and ‘conferences’ might give you some hits on articles on these matters.

282 Unicode math

e We can pass parameters as MathConstants table in the tfm table that we pass to the
core engine.

e We can use some named parameters, like x_height and pass those in the parame-
ters table.

e We can use the traditional font dimension numbers in the parameters table, but
since they overlap for symbol and extensible fonts, that is asking for troubles.

Because in MkIV we create virtual fonts at run-time and use just one family, we fill the
MathConstants table for traditional fonts as well. Future versions may use the upcom-
ing mechanisms of font parameter sets at the macro level. These can be defined for each
of the sizes (display, text, script and scriptscript, and the last three in cramped form as
well) but since a font only carries one set, we currently use a compromise.

tracing

One of the nice aspects of the opened up math machinery is that it permits us to get a
more detailed look at what happens. It also fits nicely in the way we always want to vi-
sualize things in ConTgXt using color, although most users are probably unaware of many
such features because they don't need them as | do.

\enabletrackers[math.analyzing]
\ruledhbox{$a = \sqrt{b"2 + \sin{c} - {1 \over \gammal}}$}
\disabletrackers[math.analyzing]

— S22 sine—1
V

This tracker option colors characters depending on their nature and the fact that they
are remapped. The tracker also was handy during development of LuaTgX especially for
checking if attributes migrated right in constructed symbols.

For overayear| had been using a partial Unicode math implementation in some projects
but for serious math the vectors needed to be completed. In order to help the ‘math
department’ of the ConTgXt development team (Aditya Mahajan, Mojca Miklavec, Taco
Hoekwater and myself) we have some extra tracing options, like

\showmathfontcharacters[] [0x0007B]
U+0007B: [{] left curly bracket
width: 393217, height: 589824, depth: 196608, italic: 0

mathclass: open, mathname: lbrace

Unicode math 283

next: U+FF008 _ => U+FF06E _ => U+FF01A _ => U+FF028

i i T

=> variants: U+FF03A It => U+FFO03E _ => U+FF03C

U+4FFO038

=> U+FF038

It

—> U+FF03E _ =>

The simple variant with no arguments would have extended this document with many

pages of such descriptions.

Another handy command (defined in module fnt-25) is the following:

\ShowCompleteFont{name:cambria}{9pt}{1}

\ShowCompleteFont{dummy@lmromani0-math}{10pt}{1}

This will for instance for Cambria generate between 50 and 100 pages of character tables.

If you look at the following samples you can imagine how coloring the characters and
replacements helped figuring out the alphabets We use the following input (stored in a

buffer):

$abc \bf abc \bi abc$

$\mathscript abcdefghijklmnopqgrstuvwxyz %
1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ$

$\mathfraktur abcdefghijklmnopqrstuvwxyz %
1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ$

$\mathblackboard abcdefghijklmnopqrstuvwxyz %
1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ$

$\mathscript abc IRZ \mathfraktur abc IRZ 7
\mathblackboard abc IRZ \ss abc IRZ 123$

For testing Cambria we say:

\usetypescript [cambria]

\switchtobodyfont [cambria,11lpt]
\enabletrackers[math.analyzing]

\getbuffer [mathtest] 7 the input shown before
\disabletrackers[math.analyzing]

And we get:
1234567890
1234567890

123

284 Unicode math

For the virtualized Latin Modern we say:

\usetypescript [modern]

\switchtobodyfont [modern,11pt]
\enabletrackers[math.analyzing]

\getbuffer [mathtest] 7% the input shown before
\disabletrackers[math.analyzing]

This gives:

abcdefghijklmnopqrstuvwxyz1234567890

1234567890
abcdefghijklmnopqrstuvwxyz1234567890
abc abc 123

These two samples demonstrate that Cambria has a rather complete repertoire of shapes
which is no surprise because it is a recent font that also serves as a showcase for Unicode
and OpenType driven math.

Commands like \mathscript sets an attribute. When we post-process the noad listand
encounter this attribute, we remap the characters to the desired variant. Of course this
happens selectively. So, a capital A (0x0041) becomes a capital script A (0x1D49C). Of
course this solution is rather ConTgXt specific and there are other ways to achieve the
same goal (like using more families and switching family).

special cases

Because we now are operating in the Unicode domain, we run into problems if we keep
defining some of the math symbols in the traditional TEX way. Even with the ams fonts
available we still end up with some characters that are represented by combining others.
Take for instance # which is composed of two characters. Because in MkIV we want to
have all characters in their pure form we use a virtual replacement for them. In MkIV
speak it looks like this:

local function negate(main,unicode,basecode)
local characters = main.characters
local basechar = characters[basecode]
local ht, wd = basechar.height, basechar.width

characters[unicode] = {
width = wd,
height = ht,
depth = basechar.depth,

basechar.italic,
basechar.kerns,

italic
kerns

Unicode math 285

commands = {
{ "slot", 1, basecode 1},
{ "pUSh" },
{ "down", ht/5},
{ "right", - wd/2},
{ "slot", 1, 0x2215 },
{ Hpop" }’

by

end
In case you're curious, there are indeed kerns, in this case the kerns with the Greek Delta.

Anotherthingwe need to handle is positioning of accents on top of slanted (italic) shapes.
For this TgX uses a special character in its fonts (set with \skewchar). Any character can
have in its kerning table a kern towards this special character. From this kern we can
calculate the top_accent variable that we can pass for each character. This variable lives
atthe same level aswidth, height, depthand italic andis calculated as: w/2+k, so
itdefinesthe horizontal anchor. A nice side effectis that (in the ConTgXtfont management
subsystem) this saves us passing information associated with specific fonts such as the
skew character.

A couple of concepts are unique to TgX, like having \hat and \widehat where the wide
one hasssizes. In OpenType and Unicode we don't have this distinction so we need spe-
cial trickery to simulate this. We do so by adding extra code points in a private Unicode
space which in return results in them being defined automatically and the relevant first
size variant being used for \hat. For some users this might still be too wide but at least
it's better than a wrongly positioned ascii variant. In the future we might use this private
space for similar cases.

Arrows, horizontal extenders and radicals also fall in the category ‘troublesome” if only
because they use special dimensions to get the desired effect. Fortunately OpenType
math is modeled after TgX, so in LuaTgX we introduce a couple of new constructs to deal
with this. One such simplification at the macro level is in the definition of \root. Here
we use the new \Uroot primitive. The placement related parameters are those used by
traditional TgX, but when they are available the OpenType parameters are applied. The
simplified plain definitions are now:

\def\rootradical{\Uroot 0 "221A }
\def\root#1\of{\rootradical{#1}}

\def\sqrt{\rootradical{}}

286 Unicode math

The successive sizes of the root will be taken from the font in the same way as traditional
TeX does it. In that sense LuaTgX is no doing anything differently, it only has more parame-
ters to control the process. The definition of \sqrt in ConTgXt permits an optional first
argument that sets the degree.

U+0221A: _ square root

v

width: 655362, height: 31456, depth: 754975, italic: 0
mathclass: radical, mathname: surd
next: U+FF070 M => U+FF071 M => U+FF072 M => U+FF073 M => U+FF074 M

=> variants: U+FF074 => U+FF075 = => U+FF076 -

\

Note that we've collected all characters in family o (simply because that is what TgX de-
faults characters to) and that we use the formal Unicode slots. When we use the Latin
Modern fonts we just remap traditional slots to the right ones.

Another neat trick is used when users choose among the bigger variants of some charac-
ters. The traditional approach is to create a box of a certain size and create a fake delim-
ited variant which is then used.

\definemathcommand [big] {\choosemathbig\plusone }
\definemathcommand [Big] {\choosemathbig\plustwo }
\definemathcommand [bigg] {\choosemathbig\plusthree}
\definemathcommand [Bigg] {\choosemathbig\plusfour }

Of course this can become a primitive operation and we might decide to add such a
primitive later on so we won't bother you with more details.

Attributes are also used to make live easier for authors who have to enter lots of pairs.
Compare:

\setupmathematics[autopunctuation=no]
$ (a,b) = (1.20,3.40) $

(a,b) = (1.20,3.40)

with:

\setupmathematics[autopunctuation=yes]

$ (a,b) = (1.20,3.40) $

Unicode math 287

(a,b) = (1.20,3.40)
So we don't need to use this any more:
$ (a{,}b) = (1{.}320{,}3{.}40) §

Features like this are implemented on top of an experimental math manipulation frame-
work that is part of MkIV. When the math font system is stable we will rework the rest of
math support and implement additional manipulating frameworks.

control

As with all other character related issues, in MkIV everything is driven by a character table
(consider it a database). Quite some effort went into getting that one right and although
by now math is represented well, more data will be added in due time.

In MKIV we no longer have huge lists of TgX definitions for math related symbols. Every-
thingisinitialized usingthe mentioned table: normal symbols, delimiters, radicals, whether
or not with name. Take for instance the square root:

U+0221A: _ square root

v

width: 655362, height: 31456, depth: 754975, italic: 0
mathclass: radical, mathname: surd

next: U+FF070 _ => U4+FF071 _ => U+FF072 _ => U+FF073 _ => U+FF074

¥

=> variants: U+FF074 => U4+FF075 = U+FF076 -

Its entry is:

[0x221A] = {
adobename = "radical",
category = "sm",
cjkwd = "a",
description = "SQUARE ROOT",
direction = "on",
linebreak = "ai'",
mathclass = "radical",
mathname = "surd",

unicodeslot = 0x221A,

288 Unicode math

The fraction symbol also comes in sizes. This symbol is not to be confused with the nega-
tion symbol 0x2215, which in TgX is known as \not).

U+02044: |/ fraction slash

width: 393217, height: 589824, depth: 196608, italic: 0
mathclass: binary, mathname: slash
mathclass: close, mathname: solidus

next: U+FFOOE _ => U+FF02E _ => U+FFO1E __ => U+FF02C

]] 7 /

[0x2044] = {

adobename = "fraction",

category = "sm",

contextname = "textfraction",

description = "FRACTION SLASH",

direction = "cs",

linebreak = "is",

mathspec = {
{ class = "binary", name = "slash" },
{ class = "close", name = "solidus" 1},

+,

unicodeslot = 0x2044,

¥

However, since most users don't have this symbol visualized in their word processor, they
expect the same behaviour from the regular slash. This is why we find a reference to the
real symbol in its definition.

U+0002F: |/ solidus

width: 393216, height: 589824, depth: 196608, italic: 0

mathsymbol: U+02044 |/

The definition is:

[0x002F] = {
adobename = "slash",
category = "po",
cjkwd = "na",
contextname = "textslash",

Unicode math 289

description = "SOLIDUS",
direction = "cs",
linebreak = "sy",
mathsymbol = 0x2044,
unicodeslot = 0x002F,

i

One problem left is that currently we have only one class per character (apart from the
delimiter and radical usage which have their own definitions). Future releases of ConTgXt
will provide support for math dictionaries (as in OpenMath and MathML 3). At that point
we will also have amathdict entry.

There is another issue with character mappings, one that will seldom reveal itself to the
user, but might confuse macro writers when they see an error message.

In traditional TgX, and therefore also in the Latin Modern fonts, a chain from small to large
character goes in two steps: the normal size is taken from one family and the larger vari-
ants from another. The larger variant then has a pointer to an even larger one and so on,
until there is no larger variant or an extensible recipe is found. The default family is num-
ber o. Itis for this reason that some of the definition primitives expect a small and large
family part.

However, in order to support OpenType in LuaTgX the alternative method no longer as-
sumes this split. After all, we no longer have a situation where the 256 limit forces us to
take the smaller variant from one font and the larger sequence from another (so we need
two family-slot pairs where each family eventually resolves to a font).

It is for that reason that the new \U. . . primitives expect only one family specification:
the small symbol, which then has a pointer to a larger variant when applicable. However
deep down in the engine, there is still support for the multiple family solution (after all,
we don't want to drop compatibility). As a result, in error messages you can still find
references (defaulting to 0) to large specifications, even if you don't use them. In that
case you can simply ignore the large symbol (0,0), since it is not used when the small
symbol provides a link.

extensibles

In TgX fences can be told to become larger automatically. In traditional TgX a character
can have a linked list of next larger shapes ending in a description of how to compose
even larger variants.

A parenthesis in Cambria has the following list:

U+00028: [(left parenthesis

290 Unicode math

width: 272000, height: 462400, depth: 144640, italic: 0

mathclass: open, mathname: Iparent

next: U+F03B6 @ => U+F04C0 ||| => U+F03B7 || => U+F04C6 | | => U+F03B8 | | => U+F04CC || =>

U+F03B9 ||| => variants: U+0239D L\ => U+0239C ﬂ] => U+0239B

In Latin Modern we have:

U+00028: [(left parenthesis
width: 254935.04, height: 491520, depth: 163840, italic: 0
mathclass: open, mathname: Iparent

next: U+FF000 , => U4+FF010 _ => U+FF012 _ => U+FF020 _, => U+FF030 _, => variants:

m m 0 (T

U+FF040 . => U+FF042 o= U-+FF030 m

\

Of course LuaTgX is downward compatible with respect to this feature, but the internal
representation is now closer to what OpenType math provides (which is not that far from
how TgX works simply because it's inspired by TgX). Because Cambria has different para-
meters we get slightly different results. In the following list of pairs, you see Cambria on
the left and Latin Modern on the right. Both start with stepwise larger shapes, followed
by a more gradual growth. The thresholds for a next step are driven by parameters set in

o mm BT T B m . 1

Unicode math 291

A
~~
A

In traditional TEX horizontal extensibles are not really present. Accents are chosen from
a linked list of variants and don't have an extensible specification. This is because most
such accents grow in two dimensions and the only extensible like accents are rules and
braces. However, in Unicode we have a few more and also because of symmetry we
decided to add horizontal extensibles too. Take:

$ \overbrace {a+1} \underbrace {b+2} \doublebrace {c+3} $ \par
$ \overparent{a+1} \underparent{b+2} \doubleparent{c+3} $ \par

This gives:

1b+2c¢c+3
a+1b6+2¢c+
A o

a+1p+2c+3

Contrary to Cambiria, Latin Modern Math, which is just like Computer Modern Math, has
no ready overbrace glyphs. Keep in mind that in that we're dealing with fonts that have
only 256 slots and that the traditional font mechanism has the same limitation. For this
reason, the (extensible) braces are traditionally made from snippets as is demonstrated
below.

\hbox\bgroup
\ruledhbox{\getglyph{lmex10}{\char"7A}}
\ruledhbox{\getglyph{lmex10}{\char"7B}}
\ruledhbox{\getglyph{lmex10}{\char"7C}}
\ruledhbox{\getglyph{lmex10}{\char"7D}}
\ruledhbox{\getglyph{lmex10}{\char"7A\char"7D\char"7C\char"7B}}
\ruledhbox{\getglyph{name:cambriamath}{\char"23DE}}
\ruledhbox{\getglyph{lmex10}{\char"7C\char"7B\char"7A\char"7D}}
\ruledhbox{\getglyph{name: cambriamath}{\char"23DF}}

\egroup

292 Unicode math

This gives:
?ﬁﬁ'ﬁ?éﬁm#

The four snippets have the height and depth of the rule that will connect them. Since
we want a single interface for all fonts we no longer will use macro based solutions. First
of all fonts like Cambria don't have the snippets, and using active character trickery (so
that we can adapt the meaning to the font) has no preference either. This leaves virtual

glyphs.

It took us a bit of experimenting to get the right virtual definition because it is a multi-
step process:

e Theright Unicode character (0x23DE) points to a character that has no glyph itself but
only horizontal extensibles.

e The snippets that make up the extensible don't have the right dimensions (as they
define the size of the connecting rule), so we need to make them virtual themselves
and give them a size that matches LuaTgX's expectations.

e Each virtual snippet contains a reference to the physical snippet and moves it up or
down as well as fixes its size.

e The second and fifth snippet are actually not real glyphs but rules. The dimensions
are derived from the snippets and it is shifted up or down too.

You might wonder if this is worth the trouble. Well, it is if you take into account that all
upcoming math fonts will be organized like Cambiria.

math kerning

While reading Microsofts orange booklet, it became clear that OpenType provides ad-
vanced kerning possibilities and we decided to put it on the agenda for LuaTgX.

It is possible to define a ladder-like boundary for each corner of a character where the
ladder more or less follows the shape of a character. In theory this means that when we
attach a superscript to a base character we can use two such ladders to determine the
optimal spacing between them.

Let's have a look at a few characters, the upright f and its italic cousin.

Unicode math 293

(-30,680)

U+00066

The ladders on the right can be used to position a super or subscript, that is, they are po-
sitioned in the normal way but the ladder, as well as the boundingbox and/or left ladders

top_gight
(250,780)

(05100)

(100,0)

)
|
|
|
|
|
|
|

top_right
(55,l20)

(0,620)|

(-320,720)

ox1D453

of the scripts can be used to fine tune the positioning.

Should we use this information? | made this visualizer for checking some Arabic fonts
anchoring and cursive features and then it made sense to add some of the information
related to math as well.® The orange booklet shows quite advanced ladders, and when
looking at the 3500 shapes in Cambria, it quickly becomes clear that in practice there is
not that much detail in the specification. Nevertheless, because without this feature the

resultis not acceptable LuaTgX gracefully supports it.

VeV Vy VIVa fe fo fé
VIVIVVIVIa I £y 1
TET T Ty T o f* f1

TITI Ty T} T o f ! fufd

VEVevViviVaffafa
VIVIV VIV, T ffh
TeT T ToT Tof *f £}

TATI T TYT T ff fof

VAV VLV fOf, f2
VIVIVIRVIaf i f]
TAT T, TS T T, f ff f#
T T T T Tof fufld

latin modern

Taco extended the visualizer for his presentation at Bachotek 2009 so you might run into variants.

294 Unicode math

cambria
without kerning

cambria with kerning

faking glyphs

A previous section already discussed virtual shapes. In the process of replacing all shapes
that lack in Latin Modern and are composed from snippets instead we ran into the dots.
As they are a nice demonstration of something that, although somewhat of a hack, sur-
vived 30 years without problems we show the definition used in ConTgXt MkII:

\def\PLAINldots{\ldotp\ldotp\ldotp}
\def\PLAINcdots{\cdotp\cdotp\cdotp}

\def\PLAINvdots
{\vbox{\forgetall\baselineskip.4\bodyfontsize\lineskiplimit\zero-
point\kern.6\bodyfontsize\hbox{.}\hbox{.}\hbox{.}}}

\def\PLAINddots

{\mkernimuy,
\raise.7\bodyfontsize\ruledvbox{\kern.7\bodyfontsize\hbox{.}}%
\mkern2muy,
\raise.4\bodyfontsize\relax\ruledhbox{.}%
\mkern2mu/,
\raise.1\bodyfontsize\ruledhbox{.}/
\mkernimu}

This permitted us to say:

\definemathcommand [ldots] [inner] {\PLAINldots}
\definemathcommand [cdots] [inner] {\PLAINcdots}
\definemathcommand [vdots] [nothing] {\PLAINvdots}
\definemathcommand [ddots] [inner] {\PLAINddots}

However, in MkIV we use virtual shapes instead.

The following lines show the virtual shapes in red. In each triplet we see the original, the
virtual and the overlaid character.

NN

= . oo oo . oo
MR R MR | . =)) e o

As you can see here, the virtual variants are rather close to the originals. At 12pt there
are no real differences but (somehow) at other sizes we get slightly different results but it
is hardly visible. Watch the special spacing above the shapes. Itis probably needed for
getting the spacing right in matrices (where they are used).

Unicode math 295

296 Unicode math

XXX User code

Previous versions of LuaTeX had multiple Lua instances but in practice this was not that
useful and therefore we decided to remove that feature and stick to one instance. One
reason is thatall activities take place in the zero instance anyway and other instance could
not access variables defined there. Another reason was that every \directlua callis in
fact a function call (and as such a closure) and LuaTgX catches errors nicely.

The formal \directlua primitive originally can be called in two ways:

\directlua <instance> {lua code}
\directlua name {some text} <instance> {lua code}

The optional text is then part of the error message when one is issued. The new approach
is that the number is used for the error message in case no name is specified. The exact
string is set in Lua. This means that in principle the command is backward compatible.
Old usage will basically ignore the number and use the one and only instance, while new
usage will use the number for an eventual message:

\directlua <message id> {lua code}
\directlua name {some text} <message id> {lua code}

In the second case the id is ignored. The advantage of the first call is that it saves tokens at
the TeX end and can be configured at the Lua end. In ConTeXt MKIV we have adapted the
code that invokes multiple instances by compatible code that provides a modest form
of isolation. We don't want to enforce too many constraints, first of all because users will
often use high level interfaces anyway, and also because we assume that users have no
bad intentions.

The main Lua instance in ConTgXt is accessible by:

\startluacode
tex.print("lua")
\stopluacode

This gives: ‘lua’.

However, sometimes you don't want user code to interfere too much with the main code
but still provide access to useful data. This is why we also provide:

\startusercode
global.tex.print("user 1")
tex.print ("user 2")

if characters then

User code 297

tex.print("access")
else
tex.print("no access")
end
tex.print (global.characters.data[0xA9] .contextname)
\stopusercode

This gives: ‘user 1 user 2 no access copyright'.

If you're writing a module, you might want to reserve a private namespace. This is done
with:

\definenamedlua[mymodule] [my interesting module]
Now we can say:

\startmymodulecode
help = { "help" }
tex.print (help[1])
\stopmymodulecode

This gives: ‘help’. The information is remembered:

\startmymodulecode
tex.print (help[1])
\stopmymodulecode

Indeed we get: help’.
Just to check the isolation we try:

\startusercode
tex.print (help and help[1] or "no help")
\stopusercode

As expected this gives: ‘no help” but when we do the following we will get an error mes-
sage:

\startusercode
tex.print (help[1])
\stopusercode

! LuaTeX error <private user instance>:2: attempt to index global
'help' (a nil value)
stack traceback:

<private user instance>:2: in main chunk.

298 User code

<inserted text> ...userdata")
tex.print (help[1])
}

An even more isolated variant is:

\startisolatedcode
help = { "help" }
tex.print (help and help[1] or "no help")
\stopisolatedcode

We get: ‘help’, while

\startisolatedcode
tex.print (help and help[1] or "no help")
\stopisolatedcode

gives: ‘no help’.

You can get access to the global data of other named code blocks by using the global
prefix. Atthatlevel you have also access to the instances, but this time we append data,
so user has atable userdata:

For convenience we have made tex as well as some Lua tables directly accessible within
an instance. However, we recommend not to extend these yourself (even if we do it in
the core of MkIV).

User code 299

300 Usercode

XXXIV Just plain

running

For testing basic LuaTgX functionality it makes sense to have a minimal system, and tra-
ditionally plain TgX has been the most natural candidate. It is for this reason that it had
been on the agenda for a while to provide basic OpenType font support for plain TeX as
well. Although the MkIV node mode subsystem is not yet perfect, the time was right to
start experimenting with a subset of the MkIV code.

Using plain roughly comes down to the following. First you need to generate a format:
luatex --ini --fmt=luatex.fmt luatex-plain.tex

This format has to be moved to a place where it can be found by the kpse library. Since
this can differ per distribution there is no clear recipe for it, but for TgXLive some path
ending in web2c/luatex is probably the right spot. After that you can run

luatex luatex-test.tex

This file lives under generic/context. When itis run it is quite likely that you will get
an error message because the font name database cannot be found. You can generate
one with the following command (which assumes that you have ConTgXt installed):

mtxrun --usekpse --script fonts --names

The resulting file luatex-fonts-names. lua has to be placed somewhere in your TgX
tree so that it can be found anytime. Beware: the ——usekpse flag is only used outside
ConTgXt and provides very limited functionality, just enough for this task. Again this is a
distribution specific issue so we will not dwell upon it here.

The way fonts are defined is modelled after XjIgX, as it makes no sense to support the
somewhat more fancy ConTgXt way of doing things. Keep in mind that although ConTgXt
MkIV does supportthe X3IgX syntax too, the preferred way there is to use a more symbolic
feature definition approach.

As this is an experimental setup, it might not always work out as expected. Around LuaTgX
version 0.50 we expect the code to be more or less okay.
implementation

The luatex-fonts. lua file is the first in a series of basic functionality enhancements
for LuaTgX derived from the ConTgXt MKIV code base. Please don't pollute the luatex—x

Just plain 301

namespace with code not coming from the ConTgXt development team as we may add
more files.

This file implements a basic font system for a bare LuaTgX system. By default LuaTgX only
knows about the classic tfim fonts but it can read other font formats and pass them to Lua.
With some glue code one can then construct a suitable tfm representation that LuaTgX
can work with. For more advanced font support a bit more code is needed that needs to
be hooked into the callback mechanism.

This file is currently rather simple: it just loads the Lua file with the same name. An exam-
ple of a luatex. tex file that is just the plain TX format:

\catcode \{=1 % left brace is begin-group character
\catcode \}=2 7 right brace is end-group character

\input plain
\everyjob\expandafter{\the\everyjob\input luatex-fonts\relax}

\dump
We could load the Lua file in \everyjob but maybe some day we will need more here.

When defining a font, in addition to the X3IgX way, you can use two prefixes. A file:
prefix forces a file search, while aname : prefix will result in consulting the names data-
base. The font definitions shown in figure 1 are all valid.

\font\testa=file:1lmromanlO-regular at 12pt

\font\testb=file:1lmromanl2-regular:+liga; at 24pt

\font\testc=file:1lmromanl2-regular:mode=node;+liga; at 24pt

\font\testd=name:1lmromanliObold at 12pt

\font\testh=cmr10

\font\testi=ptmr8t

\font\teste=[1lmromanl2-regular]:+liga at 30pt

\font\testf=[1lmromanl2-regular] at 40pt

\font\testj=adobesongstd-light % cid font

\font\testk=cambria(math) {\mathtest 123}

\font\testl=file:IranNastaliq.ttf:mode=node;script=arab;\
language=dflt;+calt;+ccmp;+init;+isol;+medi;+fina;+liga;\
+rlig;+kern;+mark;+mkmk at 14pt

You can load maths fonts but as Plain TgX is set up for Computer Modern (and as we don't
adapt Plain TgX) loading Cambria does not give you support for its math features auto-
matically.

302 Justplain

If you want access by name you need to generate a font database, using:

mtxrun --script font --names

and put the resulting file in a spot where LuaTgX can find it.

remarks

The code loaded in luatex-fonts.lua does not come out of thin air, but is mostly
shared with ConTgXt; however, in that macro package we go beyond what is provided in
the plain variant. When using this code you need to keep a few things in mind:

This subsystem will be extended, improved etc. at about the same pace as ConTgXt
MkIV. However, because ConTgXt provides a rather high level of integration not all
features will be supported in the same quality. Use ConTgXtif you want more goodies.

There is no official api yet, which means that using functions implemented here is at
your own risk, in the sense that names and namespaces might change. There will be
a minimal api defined once LuaTgX version 1.0 is out. Instead of patching the files it's
better to overload functions if needed.

The modules are not stripped too much, which makes it possible to benefit from im-
provements in the code that take place in the perspective of ConTgXt development.
They might be split a bit more in due time so the baseline might become smaller.

The code is maintained and tested by the ConTgXt development team. As such it
might be better suited for this macro package and integration in other systems might
demand some additional wrapping. The plain version discussed here is the bench-
mark and should be treated as a kind of black box.

Problems can be reported to the team but as we use ConTgXt MkIV as our baseline,
you'd better check if the problem is a general ConTgXt problem too.

The more high level support for features that is provided in ConTgXt is not part of the
code loaded here as it makes no sense elsewhere. Some experimental features are
not part of this code either but some might show up later.

Math font support will be added but only in its basic form once the Latin Modern and
TeX Gyre math fonts are available. Currently traditional and OpenType math fonts can
be loaded.

At this moment the more nifty speedups are not enabled because they work in tan-
dem with the alternative file handling that ConTgXt uses. Maybe around LuaTgX 1.0 we
will bring some speedup into this code too (if it pays off at all).

Just plain 303

e The code defines a few global tables. If this code is used in a larger perspective then
you can best make sure that no conflicts occur. The ConTgXt package expects users to
work in their own namespace (userdata, thirddata, moduledata or document).
We give ourselves the freedom to use any table at the global level but will not use
tables that are named after macro packages. Later, ConTgXt might operate in a more
controlled namespace but it has a low priority.

e There is some tracing code present but this is not enabled and not supported as it
integrates quite tightly into ConTgXt. In case of problems you can use ConTgXt for
tracking down problems.

e Patching the original code in distributions is dangerous as it might fix your problem
but introduce new ones for ConTgXt. So, best keep the original code as itis and over-
load functions and callbacks when needed. This is trivial in Lua.

e Attributes are (automatically) taken fromthe range 127-255 so you'd best not use these
yourself. Don't count on an attribute number staying the same and don't mess with
these attributes.

If this all sounds a bit strict, keep in mind that it makes no sense for us to maintain multiple
code bases and we happen to use ConTgXt.

304 Justplain

XXXV Halfway

introduction

We are about halfway into the LuaTgX project now. At the time of writing this document
we are only a few days away from version 0.40 (the BachoTgX cq. TgXLive version) and
around euroTgX 2009 we will release version 0.50. Starting with version 0.30 (which we
released around the conference of the Korean TgX User group meeting) all one-decimal
releases are supported and usable for (controlled) production work. We have always
stated that all interfaces may change until they are documented to be stable, and we
expect to document the first stable parts in version 0.50. Currently we plan to release
version 1.00 sometime in 2012, 30 years after TeX82, with 0.60 and 0.70 in 2010, 0.80
and 0.90 in 2011. But of course it might turn out different.

In this update we assume that the reader knows what LuaTgX is and what it does.

design principles

We started this project because we wanted an extensible engine. We chose Lua as the
glue language. We do not regret this choice as it permitted us to open up TgX's internals
reasonably well. There have been a few extensions to TgX itself, and there will be a few
more, but none of them are fundamental in the sense that they influence

typesetting. Extending TEX in that area is up to the macro package writer, who can use the
Lua language combined with TEX macros. In a similar fashion we made some decisions
about Lua libraries that are included. What we have now is what you will get. Future
versions of LuaTgX will have the ability to load additional libraries but these will not be
part of the core distribution. There is simply too much choice and we do not want to
enter endless discussions about what is best. More flexibility would also add a burden
on maintenance that we do not want. Portability has always been a virtue of TgX and we
want to keep it that way.

lua scripting

Before 0.40 there could be multiple instances of the Lua interpreter active at the same
time, but we have now decided to limit the number of instances to just one. The reason is
simple: sharingall functionality among multiple Lua interpreter instances does more bad
than good and Lua has enough possibilities to create namespaces anyway. The new limit
also simplifies the internal source code, which is a good thing. While the \directlua
command is now sort of frozen, we might extend the functionality of \1atelua, espe-
cially in relation to whatis possible in the backend. Both commands still accepta number

Halfway 305

but this now refers to an index in a user—-definable name table that will be shown when
an error OCcurs.

input and output

The current LuaTgX release permits multiple instances of kpse which can be handy if you
mix, for instance, a macro package and mplib, as both have their own ‘progname’ (and
engine) namespace. However, right from the start it has been possible to bring mostinput
under Lua control and one can overload the usual kpse mechanisms. This is what we do
in ConTgXt (and probably only there).

Logging, etc., is also under Lua control. There is no support for writing to TeX's opened
output channels except for the log and the terminal. We are investigating limited write
control to numbered channels but this has a very low priority.

Reading from zip files and sockets has been available for a while now.

Among the first things that have been implemented is a mechanism for managing cate-
gory codes (\catcode) although this is not really needed for practical usage as we aim
at full compatibility. It just makes printing back to TeX from Lua a bit more comfortable.

interface to tex

Registers can always be accessed from Lua by number and (when defined at the TgX end)
also by name. When writing to a register grouping is honored. Most internal registers can
be accessed (mostly read-only). Box registers can be manipulated but users need to be
aware of potential memory management issues.

There will be provisions to use the primitives related to setting codes (lowercase codes
and such). Some of this functionality will be available in version o.50.

fonts

The internal font model has been extended to the full Unicode range. There are readers
for OpenType, Type1, and traditional TeX fonts. Users can create virtual fonts on the fly
and have complete control over what goes into TgX. Font specific features can either be
mapped onto the traditional ligature and kerning mechanisms or be implemented in Lua.

We use code from FontForge that has been stripped to get a smaller code base. Using
the FontForge code has the advantage that we get a similar view on the fonts in LuaTgX as
in this editor which makes debugging easier and developing fonts more convenient.

306 Halfway

The interface is already rather stable but some of the keys in loaded tables might change.
Almost all of the font interface will be stable in version o.50.

tokens

It is possible to intercept tokenization. Once intercepted, a token table can be manipu-
lated before being piped backinto LuaTgX. We still support Omega's translation processes
but that might become obsolete at some point.

Future versions of LuaTgX might use Lua's so-called ‘user data’ concept but the interface
will mostly be the same. Therefore this subsystem will not be frozen yet in version o.50.

nodes

Users have access to the node lists in various stages. This interface has already been quite
stable for some time but some cleanup mightstill take place. Currently the node memory
maintenance is still explicit, but eventually we will make releasing unused nodes auto-
matic.

We have plans for keeping more extensive information within a paragraph (initial whatsit)
so that one can build alternative paragraph builders in Lua. There will be a vertical packer
(in addition to the horizontal packer) and we will open up the page builder (inserts etc.).
The basic interface will be stable in version o0.50.

attributes

This new kid on the block is now available for most subsystems but we might change
some of its default behaviour. As of 0.40 you can also use negative values for attributes.
The original idea of using negative values for special purposes has been abandoned as
we consider a secondary (faster and more efficient) limited variant. The basic principles
will be stable around version 0.50, but we reserve the freedom to change some aspects
of attributes until we reach version 1.00.

hyphenation

In LuaTEX we have clearly separated hyphenation, ligature building and kerning. Man-
aging patterns as well as hyphenation is reimplemented from scratch but uses the same
principles as traditional TgX. Patterns can be loaded at run time and exceptions are quite
efficient now. There are a few extensions, like embedded discretionaries in exceptions
and pre- as well as posthyphens.

Halfway 307

On the agenda is fixing some ‘hyphenchar’ related issues and future releases might deal
with compound words as well. There are some known limitations that we hope to have
solved in version 0.50.

images

Image handling is part of the backend. This part of the pdfTgX code has been rewritten
and can now be controlled from Lua. There are already a few more options than in pdfTgX
(simple transformations). The image code will also be integrated in the virtual font han-

dler.

paragraph building

The paragraph builder has been rewritten in C (soon to be converted back to cweb).
There is a callback related to the builder so it is possible to overload the default line
breaker by one written in Lua.

There are no further short-term revisions on the agenda, apart from writing an advanced
(third order) Arabic routine for the Oriental TgX project.

Future releases may provide a bit more control over \parshapes and multiple paragraph
shapes.

metapost

The closely related mplib project has resulted in a MetaPost library that is included in
LuaTgX. There can be multiple instances active at the same time and MetaPost processing
is very fast. Conversion to pdfis to be done with Lua.

On the to-do list is a bit more interoperability (pre- and postscript tables) and this will
make it into release 0.50 (maybe even in version 0.40 already).

mathematics

Version 0.50 will have a stable version of Unicode math support. Math is backward com-
patible but provides solutions for dealing with OpenType math fonts. We provide math
lists in their intermediate form (noads) so that it is possible to manipulate math in great
detail.

The relevant math parameters are reorganized according to what OpenType math pro-
vides (we use the Cambriafontas our reference). Parameters are grouped by style. Future
versions of LuaTgX will build upon this base to provide a simple mechanism for switching
style sets and font families in-formula.

308 Halfway

There are new primitives for placing accents (top and bottom variants and extensible
characters), creating radicals, and making delimiters. Math characters are permitted in
text mode.

There will be an additional alignment mechanism analogous to what MathML provides.
Expect more.

page building

Not much work has been done on opening up the page builder although we do have
access to the intermediate lists. This is unlikely to happen before o.50.

going cweb

Afterreleasing version 0.50 around EuroTgX 2009 there will be a period of relative silence.
Apart from bug fixes and (private) experiments there will be no release for a while. Atthe
time of the 0.50 release the LuaTgX source code will probably be in plain C completely.
After that is done, we will concentrate hard on consolidating and upgrading the code
base back into cweb.

cleanup

Cleanup of code is a continuous process. Cleanup is needed because we deal with a
merge of traditional TgX, e-TEX extensions, pdfTEX functionality and some Omega (Aleph)
code.

Compeatibility is a prerequisite, with the exception of logging and rather special ligature
reconstruction code.

Halfway 309

We also use the opportunity to slowly move away from all the global variables that are
used in the Pascal version.

alignments

We do have some ideas about opening up alignments, but it has a low priority and it will
not happen before the 0.50 release.

error handling

Once all code is converted to cweb, we will look into error handling and recovery. It has
no high priority as it is easier to deal with after the conversion to cweb.

backend

The backend code will be rewritten stepwise. The image related code has already been
redone, and currently everything related to positioning and directions is redesigned and
made more consistent. Some bugs in the Aleph code (inherited from Omega) have been
removed and we are trying to come up with a consistent way of dealing with directions.
Conceptually this is somewhat messy because much directionality is delegated to the
backend.

We are experimenting with positioning (preroll) and better literal injection. Currently we
still use the somewhat fuzzy pdfTgX methods that evolved over time (direct, page and
normal injection) but we will come up with a clearer model.

Accuracy of the output (pdf) will be improved and character extension (hz) will be done
more efficiently. Experimental code seems to work okay. This will become available from
release 0.40 and onwards and further cleanup will take place when the cweb code is
there, as much of the pdf backend code is already C.

context mkiv

When we started with LuaTgX we decided to use a branch of ConTgXt for testing as it in-
volves quite drastic changes, many rewrites, a tight connection with binary versions, etc.

As a result for some time we now have two versions of ConTgXt: Mkl and MkIV, where
the former targets pdfTgX and X3IgX, and the latter exclusively uses LuaTgX. Although the
user interface is downward compatible the code base starts to diverge more and more.
Therefore at the last ConTgXt meeting it was decided to freeze the current version of MklI
and only apply bug fixes and an occasional simple extension.

310 Halfway

This policy change opened the road to rather drastic splitting of the code, also because
full compatibility between Mkll and MkIV is not required. Around LuaTgX version 0.40
the new, currently still experimental, document structure related code will be merged
into the regular MkIV version. This might have some impact as it opens up new possibil-
ities.

the future

In the future, MkIV will try to create (more) clearly separated layers of functionality so that
it will become possible to make subsets of ConTgXt for special purposes. This is done
under the name MetaTgX. Think of layering like:

io, catcodes, callback management, helpers

input regimes, characters, filtering

nodes, attributes and noads

user interface

languages, scripts, fonts and math

spacing, par building and page construction

xml, graphics, MetaPost, job management, and structure (huge impact)
modaules, styles, specific features

tools

fonts

At this moment MkIV is already quite capable of dealing with OpenType fonts. The dri-
ving force behind this is the Oriental TgX project which brings along some very complex
and feature rich Arabic font technology. Much time has gone into reverse engineering
the specification and behaviour of how these fonts behave in Uniscribe (which we use as
our reference for Arabic).

Dealing with the huge cjk fonts is less a font issue and more a matter of node list process-
ing. Around the annual meeting of the Korean User Group we got much of the machinery
working, thanks to discussions on the spot and on the mailing list.

math

Between LuaTgX versions 0.30 and 0.40 the math machinery was opened up (stage one).
In order to test this new functionality, MkIV's math subsystem (that was then already par-
tially Unicode aware) had to be adapted.

First of all Unicode permits us to use only one math family and so MkIV now does that.
The implementation uses Microsoft's Cambria Math font as a benchmark. It creates vir-
tual fonts from the other (old and new) math fonts so they appear to match up to Cambria

Halfway 311

Math. Because the TEX Gyre math project is not yet up to speed MkIV currently uses vir-
tual variants of these fonts that are created at run time. The missing pieces in for instance
Latin Modern and friends are compensated for by means of virtual characters.

Because itis now possible to parse the intermediate noad lists MkIV can do some manip-
ulations before the formula is typeset. This is for instance used for alphabet remapping,
forcing sizes, and spacing around punctuation.

Although MKIV already supports most of the math that users expect there is still room
for improvement once there is even more control over the machinery. This is possible
because MkIV is not bound to downward compatibility.

As with all other LuaTgX related MkIV code, it is expected that we will have to rewrite
most of the current code a few times as we proceed, so MkIV math support is not yet
stable either. We can take such drastic measures because MkIV is still experimental and
because users are willing to do frequent synchronous updating of macros and engine. In
the process we hope to get away from all ad—hoc boxing and kerning and whatever so-
lutions for creating constructs, by using the new accent, delimiter, and radical primitives.

tracing and testing

Whenever possible we add tracing and visualization features to ConTgXt because the
progress reports and articles need them. Recent extensions concerned tracing math and
tracing OpenType processing.

The OpenType tracing options are a great help in stepwise reaching the goals of the Ori-
ental TEX project. This project gave the LuaTgX project its initial boost and aims at high
quality right-to-left typesetting. In the process complex (test) fonts are made which, com-
bined with the tracing mentioned, help us to reveal the secrets of OpenType.

312 Halfway

XXXVI Where do we stand

Inthe previous chapter we discussed the state of LuaTgXin the beginning of 2009, the pre-
lude to version 0.50. We considerthe release of the 0.50 version to be a really important,
both for LuaTpX and for MkIV so here | will reflect on the state around this release. | will
do this from the perspective of processing documents because useability is an important
measure.

There are several reasons why LuaTgX 0.50 is an important release, both for LuaTgX and
for MKIV. Let's start with LuaTgX.

Apart from a couple of bug fixes, the current version is pretty usable and stable. De-
tails of what we've reached so far have been presented previously.

The code base has been converted from Pascal to C, and as a result the source tree
has become simpler (being cweb compliant happens around 0.60). This transition
also opens up the possibility to start looking into some of the more tricky internals,

like page building.

Most of the front end has been opened up and the new backend code is getting into
shape. As the backend was partly already done in C the moment has come to do
a real cleanup. Keep in mind that we started with pdfTgX and that much of its extra
functionality is rather interwoven with traditional TEX code.

If we look at ConTgXt, we've also reached a crucial point in the upgrade.

The code base is now divided into Mkll and MkIV. This permits us not only to reim-
plement bits and pieces (something that was already in progress) but also to clean up
the code (only MkIV).

If you kept up with the development you already know the kind of tasks we can (and
do) delegate to Lua. Just to mention a few: file handling, font loading and Open-
Type processing, casing and some spacing issues, everything related to graphics and
MetaPost, language support, color and other attributes, input regimes, xml, multi-
pass data, etc.

Recently all backend related code was moved to Lua and the code dealing with hy-
perlinks, widgets and alike is now mostly moved away from TgX. The related cleanup
was possible because we no longer have to deal with a mix of dvi drivers too.

Everything related to structure (which includes numbering and multi-pass data like
tables of contents and registers) is now delegated to Lua. We move around way more
information and will extend these mechanisms in the near future.

Where do we stand 313

Tracing on Taco's machine has shown that when processing the LuaTgX reference manual
the engine spends about10% of the time on getting tokens, 15% on macro expansion, and
some 50% on Lua (callback interfacing included). Especially the time spent by Lua differs
per document and garbage collections seems to be a bottleneck here. So, let's wrap up
how LuaTgX performs around the time of o.50.

We use three documents for testing (intermediate) LuaTgX binaries: the reference man-
ual, the history document ‘mk’, and the revised metafun manual. The reference manual
has a MetaPost graphic on each page which is positioned using the ConTgXt background
layering mechanism. This mechanism is active only when backgrounds are defined and
has some performance consequences for the page builder. However, most time is spent
on constructing the tables (tabulate) and because these can contain paragraphs that can
run over multiple pages, constructing a table takes a few analysis passes per table plus
some so-called vsplitting. We load some fonts (including narrow variants) but for the rest
this document is not that complex. Of course colors are used as well as hyperlinks.

The report at the end of the runs looks as follows:

input load time 0.109 seconds

stored bytecode data - 184 modules, 45 tables, 229 chunks
node list callback tasks - 4 unique tasks, 4 created, 20980 calls
cleaned up reserved nodes - 29 nodes, 10 lists of 1427

node memory usage - 19 glue_spec, 2 dir

h-node processing time - 0.312 seconds including kernel

attribute processing time - 1.154 seconds

used backend - pdf (backend for directly generating pdf output)

loaded patterns - en:us:pat:exc:2

jobdata time - 0.078 seconds saving, 0.047 seconds loading

callbacks - direct: 86692, indirect: 13364, total: 100056

interactive elements - 178 references, 356 destinations

v-node processing time - 0.062 seconds

loaded fonts - 43 files:

fonts load time - 1.030 seconds

metapost processing time - 0.281 seconds, loading: 0.016 seconds,
execution: 0.156 seconds, n: 161

result saved in file - luatexref-t.pdf

luatex banner - this is luatex, version beta-0.42.0

control sequences - 31880 of 147189

current memory usage - 106 MB (ctx: 108 MB)

runtime - 12.433 seconds, 164 processed pages,

164 shipped pages, 13.191 pages/second

The runtime is influenced by the fact that some startup time and font loading takes place.
The more pages your document has, the less the runtime is influenced by this.

More demanding is the ‘mk’ document (figure ??fig.mk). Here we have many fonts, in-
cluding some really huge cjk and Arabic ones (and these are loaded at several sizes and
with different features). The reported font load time is large but this is partly due to the

314 Where do we stand

fact that on my machine for some reason passing the tables to TgX involved a lot of page-
faults (we think that the cpu cache is the culprit). Older versions of LuaTgX didn't have
that performance penalty, so probably half of the reported font loading time is kind of
wasted.

The hnode processing time refers mostly to OpenType font processing and attribute pro-
cessing time has to do with backend issues (like injecting color directives). The more
features you enable, the larger these numbers get. The MetaPost font loading refers to
the punk font instances.

input load time 0.125 seconds

stored bytecode data 184 modules, 45 tables, 229 chunks
node list callback tasks - 4 unique tasks, 4 created, 24295 calls
cleaned up reserved nodes - 116 nodes, 29 lists of 1411

node memory usage - 21 attribute, 23 glue_spec, 7 attribute_list,
7 local_par, 2 dir
h-node processing time - 1.763 seconds including kernel
attribute processing time - 2.231 seconds
used backend - pdf (backend for directly generating pdf output)
loaded patterns - en:us:pat:exc:2 en-gb:gb:pat:exc:3 nl:nl:pat:exc:4
language load time - 0.094 seconds, n=4
jobdata time - 0.062 seconds saving, 0.031 seconds loading
callbacks - direct: 98199, indirect: 20257, total: 118456
xml load time - 0.000 seconds, lpath calls: 46, cached calls: 31
v-node processing time - 0.234 seconds
loaded fonts - 69 files:
fonts load time - 28.205 seconds
metapost processing time - 0.421 seconds, loading: 0.016 seconds,
execution: 0.203 seconds, n: 65
graphics processing time - 0.125 seconds including tex, n=7
result saved in file - mk.pdf
metapost font generation - O glyphs, 0.000 seconds runtime
metapost font loading - 0.187 seconds, 40 instances,
213.904 instances/second
luatex banner - this is luatex, version beta-0.42.0
control sequences - 34449 of 147189
current memory usage - 454 MB (ctx: 465 MB)
runtime - 50.326 seconds, 316 processed pages,

316 shipped pages, 6.279 pages/second

Looking at the Metafun manual one might expect that one needs even more time per
page but this is not true. We use OpenType fonts in base mode as we don't use fancy
font features (base mode uses traditional TEX methods). Most interesting here is the time
involved in processing MetaPost graphics. There are a lot of them (1772) and in addition
we have 7 calls to independent ConTgXt runs that take one third of the total runtime.
About half of the runtime involves graphics.

input load time - 0.109 seconds
stored bytecode data - 184 modules, 45 tables, 229 chunks

Where do we stand 315

node list callback tasks - 4 unique tasks, 4 created, 33510 calls

cleaned up reserved nodes - 39 nodes, 93 lists of 1432

node memory usage 249 attribute, 19 glue_spec, 82 attribute_list,
85 local_par, 2 dir

h-node processing time - 0.562 seconds including kernel

attribute processing time - 2.512 seconds

used backend - pdf (backend for directly generating pdf output)
loaded patterns - en:us:pat:exc:2

jobdata time - 0.094 seconds saving, 0.031 seconds loading
callbacks - direct: 143950, indirect: 28492, total: 172442
interactive elements - 214 references, 371 destinations

v-node processing time - 0.250 seconds

loaded fonts - 45 files: 1.....

fonts load time - 1.794 seconds

metapost processing time - 5.585 seconds, loading: 0.047 seconds,

execution: 2.371 seconds, n: 1772,
external: 15.475 seconds (7 calls)

mps conversion time - 0.000 seconds, 1 conversions
graphics processing time - 0.499 seconds including tex, n=74
result saved in file - metafun.pdf

luatex banner - this is luatex, version beta-0.42.0
control sequences - 32587 of 147189

current memory usage - 113 MB (ctx: 115 MB)

runtime - 43.368 seconds, 362 processed pages,

362 shipped pages, 8.347 pages/second

By now it will be clear that processing a document takes a bit of time. However, keep in
mind that these documents are a bit atypical. Although ... thee average ConTgXt doc-
ument probably uses color (including color spaces that involve resource management),
and has multiple layers, which involves some testing of the about 30 areas that make up
the page. And there is the user interface that comes with a price.

It might be good to say a bit more about fonts. In ConTgXt we use symbolic names and
often a chain of them, so the abstract SerifBold resolves to MyNiceFontSerif-Bold
which in turn resolves to mnfs-bold.otf. As XJIgX introduced lookup by internal (or
system) fontname instead of filename, Mkl also provides that method but MkIV adds
some heuristics to it. Users can specify font sizes in traditional TgX units but also relative
to the body font. All this involves a bit of expansion (resolving the chain) and parsing
(of the specification). At each of the levels of name abstraction we can have associated
parameters, like features, fallbacks and more. Although these mechanisms are quite op-
timized this still comes at a performance price.

Also, in the default MkIV font setup we use a couple more font variants (as they are avail-
able in Latin Modern). We've kept definitions sort of dynamic so you can change them
and combine them in many ways. Definitions are collected in typescripts which are fil-
tered. We support multiple mixed font sets which takes a bit of time to define but switch-
ing is generally fast. Compared to Mkl the model lacks the (font) encoding and case han-
dling code (here we gain speed) but it now offers fallback fonts (replaced ranges within

316 Where do we stand

fonts) and dynamic OpenType font feature switching. When used we might lose a bit
of processing speed although fewer definitions are needed which gets us some back.
The font subsystem is anyway a factor in the performance, if only because more complex
scripts or font features demand extensive node list parsing.

Processing the TEXbook with LuaTgX on Taco's machine takes some 3.5 seconds in pdfTgX
and 5.5 seconds in LuaTgX. This is because LuaTgX internally is Unicode and has a larger
memory space. The few seconds more runtime are consistent with this. One of the rea-
sons that The TgX Book processes fast is that the font system is not that complex and has
hardly any overhead, and an efficient output routine is used. The format file is small and
the macro set is optimal for the task. The coding is rather low level so to say (no layers
of interfacing). Anyway, 100 pages per second is not bad at all and we don't come close
with ConTgXt and the kind of documents that we produce there.

This made me curious as to how fast really dumb documents could be processed. It
does not make sense to compare plain TEX and ConTgXt because they do different things.
Instead | decided to look at differences in engines and compare runs with different num-
bers of pages. That way we get an idea of how startup time influences overall perfor-
mance. We look at pdfTgX, which is basically an 8-bit system, XjTgX, which uses external
libraries and is Unicode, and LuaTgX which is also Unicode, but stays closer to traditional
TeX but has to check for callbacks.

In our measurement we use a really simple test document as we only want to see how the
baseline performs. As not much content is processed, we focus on loading (startup), the
output routine and page building, and some basic pdf generation. After all, it's often a
quick and dirty test that gives users their first impression. When looking at the times you
need to keep in mind that XjIgX pipes to dvipdfmx and can benefit from multiple cpu
cores. All systems have different memory management and garbage collection might
influence performance (as demonstrated in an earlier chapter of the ‘mk’ document we
can trace in detail how the runtime is distributed). As terminal output s a significant slow-
down for TEX we run in batchmode. The test is as follows:

\starttext
\dorecurse{2000}{test\page}
\stoptext

On my laptop (Dell Mgo with 2.3Ghz T76000 Core 2 and 4MB memory running Vista) |
get the following results. The test script ran each test set 5 times and we show the fastest
run so we kind of avoid interference with other processes that take time. In practice run-
time differs quite a bit for similar runs, depending on the system load. The time is in
seconds and between parentheses the number of pages per seconds is mentioned.

engine 30 300 2000 10000

xetex 1.81(16) 2.45(122) 6.97(286) 29.20(342)

Where do we stand 317

pdftex 1.28(23) 2.07(144) 6.96(287) 30.94(323)
luatex 1.48(20) 2.36(127) 7.85(254) 34.34(291)

The next table shows the same test but this time on a 2.5Ghz E5420 quad core server with
16GB memory running Linux, but with 6 virtual machines idling in the background. All
binaries are 64 bit.

engine 30 300 2000 10000

xetex 0.92(32) 1.89(158) 8.74(228) 42.19(237)
pdftex 0.49(61) 1.14(262) 5.23(382) 24.66 (405)
luatex 1.07(27) 1.99(150) 8.32(240) 38.22(261)

A test demonstrated that for LuaTgX the 30 and 300 page runs take 70% more runtime
with 32 bit binaries (recent binaries for these engines are available on the ConTgXt wiki
contextgarden.net).

When you compare both tables it will be clear that it is non-trivial to come to conclusions
about performances. But one thing is clear: LuaTgX with ConTgXt MKIV is not perform-
ing that badly compared to its cousins. The Unicode engines perform about the same
and pdfTgX beats them significantly. Okay, | have to admit that in the meantime some
cleanup of code in MkIV has happened and the LuaTgX runs benefit from this, but on the
other hand, the other engines are not hindered by callbacks. As | expect to use Mkl less
frequently optimizing the older code makes no sense.

There is not much chance of LuaTgX itself becoming faster, although a few days before
writing this Taco managed to speed up font inclusion in the backend code significantly
(we'retalking about halfasecond to asecond forthe three documents used here). Onthe
contrary, when we open up more mechanisms and have upgraded backend code it might
actually be a bit slower. On the other hand, | expect to be able to clean up some more
ConTgXt code, although we already got rid of some subsystems (like the rather flexible
(mixed) font encoding, where each language could have multiple hyphenation patters,
etc.). Also, although initial loading of math fonts might take a bit more time (as long as we
use virtual Latin Modern math), font switching is more efficient now due to fewer families.
But speedups in the ConTgXt code might be compensated for by more advanced mech-
anisms that call out to Lua. You will be surprised by how much speed can be improved
by proper document encoding and proper styles. | can try to gain a couple more pages
per second by more efficient code, but a user's style that does an inefficient massive font
switch for some 10 words per page easily compensates for that.

When processing this 10 page chapter in an editor (Scite) it takes some 2.7 seconds be-
tween hitting the processing key and the result showing up in Acrobat. | can live with
that, especially when | keep in mind that my next computer will be faster.

318 Where do we stand

This is where we stand now. The three reports shown before give you an impression
of the impact of LuaTgX on ConTgXt. To what extent is this reflected in the code base?
We end this chapter with showing four tables. The first table shows the number of files
that make up the core of ConTgXt (modules are excluded). The second table shows the
accumulated size of these files (comments and spacing stripped). The third and fourth
table show the same information in a different way, just to give you a better impression
of the relative number of files and sizes. The four character tags represent the file groups,
so the files have names like node-ini.mkiv, font-otf.lua and supp-box.tex.

Eventually most Mkl files (with the mki i suffix) and MkIV files (with suffixmkiv) will differ
and the number of files with the tex suffix will be fewer. Because they are and will be
mostly downward compatible, styles and modules will be shared as much as possible.

Where do we stand 319

i Seax AT TT
[4 x10% T
I ST [ESIN T
[N 07 oTun AT Tt
S . ' odf3 At TT
[__ W [___W I T edfy at 1T
9 - v [oRI} AT TT
T [sY03 AT
W m PIg3 AT TT
T [¥sel AT
I I S Tqe3 AT TIT
4 - I S m 3shs AT TT
me K4 I 0T qus AT TT
4 o I T T ddns At TT
LT 4 I 0T oI1s AT TT
[oads T
it ords
4 [I | 1108 AT TT
z "I dios At
T _—— 4 uwIos AT TT
[0} [I I T it 801 AT 1T
< [doxd At TT
e qead
< azpd
T I €7 I T efed AT TT
4 - S 4 soed AT TT
. wWwIou AT TT
(04 ___ W) spou AT
S [4 I T T AT TT
S < qrim AT
€ ___ W) - S — 1T ®IOW AT TT
L I CT I T ulew AT IT
L [I TuXT AT
81 - S Jeny AT
o1 [I spdr At
€ _ W) s I——— 0T Swer AT TT
T [| I I 6 eael AT TT
[W puey AT TT
4 < € uydi8 AT TT
1€ . © I T qUOy AT TT
me £ TT
[I € odue AT TT
61 e1Ep
L i i 8100 AT TT
T [| I 07 quod AT TT
1 . € . L 0700 AT TT
4 m weyd AT
L 4 Ieyd AT
1 [[4 03> AT TT
T [4 W Imq AT TT
4 [I Tarq AT
4 [Worq AT
T it I313e AT
T 4 I Uoue AT TT
ent zIg ATHU 90T T €0€ xe1 81 £103e7e0

‘- (popnIoxe oxe soTA1S pue soTNpow) I1XOLUO) UT Pasn SITTJ JO Io9qumu oYL - 600 ‘6T ATnr

320 Where do we stand

I 75852T Seax AT TT
N 067971 X30% T
I S79/S qen 3
| 89% 795 oTum AT TT
86922 W 18501 | L¥T odfy AT TT
I 06678 I .75S9T I TVY9VT edfy AT TT
€580 [ebigas W ovPeET ORIl AT TT
STHS | TETT sY03 AT
1 712h I /870L PIU} AT TT
5022 | 61T yse1 AT
I 966077 N 7CTSTT Tqe3 AT TIT
G182 N G9798 N 08907 M 07591 3sfs AT TT
1 €6.€ 1 €6.€ I 76708 qufs AT TT
2952 H T0S. I 07£807 I 0..TL ddns At TT
12L08 I 00567 I ST °I3s AT TT
I 0/S./€T oeds T
1 0672 oeds
T6LL | 6€T W 97102 9108 AT TT
66%CC | S%ST dros at
1082 77909 N 06778 uwIos AT TT
62081 | 659 . SC7S0T | 00ST 1801 AT TT
§ 0002 W C%06 doxd ar TT
YTovT jexd
EEm 079C€ azpd
568¢ I 6SE8.C I 0897 efed AT TT
1202 I /7078 I G808 yoed AT TT
B 052%T wIou AT TT
0629 B 59867 spou AT
8981 - m 8858 B 9588 B 79867 - Taw AT TT
5.88€ | L0TC qrim AT
$ve9C N 05862 I 7TT.S B TE0ST ®lOW AT TT
62507 0L 775707 yyew AT TT
61619 W ¥%501 TUXT AT
09,82 W 0926 qeny AT
97069 1 02.8 gpdr AT
88091 . TT9SE B 0205S e LTT6L Suer AT TT
She | LLET 0 9.6 B S0SLT eael AT TT
| LT0T . Y61C puey AT TT
95281 . 697C€ I SL7S udi8 at 1T
457474 I 769 I 197207 quoy AT TT
12192 113 T
W 09071 I G7S85C ooue AT TT
STSTL '3ep
T06S€ I 095761 I C9850C 2100 AT TT
1 962 | 0zT . T%68T quod AT TT
1596 W 1901 . 87607 0TSV 070> AT TT
TPEDT W 9Tyl weyd AT
LSETY - 1 2282 Ieyd AT
909 1 0699 1 €699 u 126 03> AT TT
sz18 Wl 788€C W 7589 Imq AT TT
819% | G0L Tarq AT
89LET § 07LL jorq AT
8156 1 soce I33e AT
0962 B CET0S B 0075 Uoue AT TT
+ £6E88LE ©®NT 9L66ETT ATYW /85097 T %9887 + G18E9ST X°3 $TS598 £10809e0

('ponowax sededs pue queumod (SOTTI ©lep o8Ie] JO UOTSNTOUT S9IEITPUT + (SOTTJ ©lep o8Iel JO UOTSNTOXd S9IEITPUT -) 1XSIUO) UT Pasn S8TIJ (9I01) JO 9zTS dYL - 6007 ‘6T ATnr

Where do we stand 321

Seqx

Patyd qIan oTun od£q odfq JeIl SY0% PIYL yseq Tqes 1sfs quis ddns ol G -] oeds oeds 1108

! I _ - i _ = =

dios uIos 1881 doxd qoxd aypd o8ed yoed wIou apou 17w qITU elouw yaeu TWXT Jent pdT Suetr
B ——-— - —— —_ - } —— B

eael puey yda8 quog 1TTF oous elep 2100 3u0d o102 woyd Teyd 23ed FInq 1919 Joeq 133 youe
- -- | . - - -

1

C(eNT CATHW ‘TTHU ‘X93)

3X9LUO) UT Posn SOTTF JO I9qUNU SATIETSI SUL - 600Z ‘6T ATur

322 Where do we stand

Seqx Xq0X qIeA STun od£q odfq oeIq Y09 pIyL yses 19e3 1sfs quis ddns 5138 oeds oeds 1108

dios uIos 1881 doxd qoxd aypd o8ed yoed wIou apou 17w qITU elouw yaeu TWXT Jent pdT Suetr

eael puey yda8 quog 1TTF oous elep 2100 3u0d o102 woyd Teyd 23ed FInq 1919 Joeq 133 youe

(enT ‘ATHW ‘TTHU ‘X93) 3IYOLUO) UT POSn SOTTF JO 92ZTS SATIRTAI oYL - 6007 ‘61 ATnr

Where do we stand 323

